New Molecular Collisional-Radiative Model in ADAS

Francisco Guzmán

ADAS-EU University of Strathclyde
IRFM-CEA, Cadarache

ADAS Workshop 24 – 25 September 2012
Outline

1. Motivation

2. Molecular ADAS routines: ADAS900
 - General view
 - Molecular Data
 - CR Model

3. Results

4. Summary
Outline

1. Motivation

2. Molecular ADAS routines: ADAS900
 - General view
 - Molecular Data
 - CR Model

3. Results

4. Summary
Molceules desorbed from the wall contribute to the neutral density and influence the divertor physics.

ADAS 900 series main objective is to extend ADAS Database to molecular data.
Molecules desorbed from the wall contribute to the neutral density and influence the divertor physics.

ADAS 900 series main objective is to extend ADAS Database to molecular data.
Motivation

- Molecules desorbed from the wall contribute to the neutral density and influence the divertor physics.
- ADAS 900 series main objective is to extend ADAS Database to molecular data.
- We want to provide molecular data tools to use in plasma edge and divertor calculations and experiments.
Steps to follow for a Molecular CR model

1. Compile a database. Structure it and provide readings tool for it. Do maxwellian integration of cross sections to obtain rates (Boring part).

2. There are gaps!. Fill the gaps with estimation of molecular processes. Automatic process is needed due to the big number of states.

3. Solve CR model for all molecules and all dissociation products.
Steps to follow for a Molecular CR model

1. Compile a database. Structure it and provide readings tool for it. Do maxwellian integration of cross sections to obtain rates (Boring part).

2. There are gaps!. Fill the gaps with estimation of molecular processes. Automatic process is needed due to the big number of states.

3. Solve CR model for all molecules and all dissociation products.
Steps to follow for a Molecular CR model

1. Compile a database. Structure it and provide readings tool for it. Do maxwellian integration of cross sections to obtain rates (Boring part).

2. There are gaps!. Fill the gaps with estimation of molecular processes. Automatic process is needed due to the big number of states.

3. Solve CR model for all molecules and all dissociation products.
Steps to follow for a Molecular CR model

1. Compile a database. Structure it and provide readings tool for it. Do maxwellian integration of cross sections to obtain rates (Boring part).

2. There are gaps! Fill the gaps with estimation of molecular processes. Automatic process is needed due to the big number of states.

3. Solve CR model for all molecules and all dissociation products.
Outline

1 Motivation

2 Molecular ADAS routines: ADAS900
 - General view
 - Molecular Data
 - CR Model

3 Results

4 Summary
ADAS 900

Fundamental Molecular Data → mdf02 FILE → 902 & 903 GENERATION ROUTINES

FC FACTORS A−VALUES mdf00

MOLECULAR FORMAT FILE ν−ν resolved mdf04

ADAS904 CR MODEL

EFFECTIVE COEFFICIENTS → POPULATIONS

SPECTROSCOPY PARAMETERS PECS, SXB, DXB
Molecular ADAS routines: ADAS900

- **mdf00** General information. Vibrational energies. FC factors. A-values.
- **mdf02** Cross sections and rates obtained from external sources or calculations.
- **mdf33/34** ADAS902 product. Rates (upsilons and \(cm^3 s^{-1} \)) obtained from maxwellian integratrion of mdf02.
- **mdf04/14** ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.
- **mdf11** ADAS904 product. Molecular effective coefficients.
- **mdf15** Molecular PEC, SXB, DXB.
- **mdf25** Mapping Central ADAS adf and mdf formats correlation.
- **mdf38** Autoionization and predissociation rates.
Motivation

Molecular ADAS routines: ADAS900

Results

Summary

Formats

mdf00 General information. Vibrational energies. FC factors. A-values.

mdf02 Cross sections and rates obtained from external sources or calculations.

mdf33/34 ADAS902 product. Rates (upsilons and $cm^3 s^{-1}$) obtained from maxwellian integration of *mdf02*.

mdf04/14 ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.

mdf11 ADAS904 product. Molecular effective coefficients.

mdf15 Molecular PEC, SXB, DXB.

mdf25 Mapping Central ADAS adf and mdf formats correlation.

mdf38 Autoionization and predissociation rates.
Motivation

Molecular ADAS routines: ADAS900

Results

Summary

Formats

mdf00 General information. Vibrational energies. FC factors. A-values.

mdf02 Cross sections and rates obtained from external sources or calculations.

mdf33/34 ADAS902 product. Rates (upsilons and cm^3s^{-1}) obtained from maxwellian integration of *mdf02*.

mdf04/14 ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.

mdf11 ADAS904 product. Molecular effective coefficients.

mdf15 Molecular PEC, SXB, DXB.

mdf25 Mapping Central ADAS adf and mdf formats correlation.

mdf38 Autoionization and predissociation rates.
Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdf00</td>
<td>General information. Vibrational energies. FC factors. A-values.</td>
</tr>
<tr>
<td>mdf02</td>
<td>Cross sections and rates obtained from external sources or calculations.</td>
</tr>
<tr>
<td>mdf33/34</td>
<td>ADAS902 product. Rates (upsilons and (cm^3 s^{-1})) obtained from maxwellian integratrin of mdf02.</td>
</tr>
<tr>
<td>mdf04/14</td>
<td>ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.</td>
</tr>
<tr>
<td>mdf11</td>
<td>ADAS904 product. Molecular effective coefficients.</td>
</tr>
<tr>
<td>mdf15</td>
<td>Molecular PEC, SXB, DXB.</td>
</tr>
<tr>
<td>mdf25</td>
<td>Mapping Central ADAS adf and mdf formats correlation.</td>
</tr>
<tr>
<td>mdf38</td>
<td>Autoionization and predissociation rates.</td>
</tr>
</tbody>
</table>
Formats

mdf00 General information. Vibrational energies. FC factors. A-values.

mdf02 Cross sections and rates obtained from external sources or calculations.

mdf33/34 ADAS902 product. Rates (upsilons and $cm^3 s^{-1}$) obtained from maxwellian integratrion of mdf02.

mdf04/14 ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.

mdf11 ADAS904 product. Molecular effective coefficients.

mdf15 Molecular PEC, SXB, DXB.

mdf25 Mapping Central ADAS adf and mdf formats correlation.

mdf38 Autoionization and predissociation rates.
Formats

mdf00 General information. Vibrational energies. FC factors. A-values.

mdf02 Cross sections and rates obtained from external sources or calculations.

mdf33/34 ADAS902 product. Rates (upsilons and cm^3s^{-1}) obtained from maxwellian integration of *mdf02*.

mdf04/14 ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.

mdf11 ADAS904 product. Molecular effective coefficients.

mdf15 Molecular PEC, SXB, DXB.

mdf25 Mapping Central ADAS adf and mdf formats correlation.

mdf38 Autoionization and predissociation rates.
<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdf00</td>
<td>General information. Vibrational energies. FC factors. A-values.</td>
</tr>
<tr>
<td>mdf02</td>
<td>Cross sections and rates obtained from external sources or calculations.</td>
</tr>
<tr>
<td>mdf33/34</td>
<td>ADAS902 product. Rates (upsilons and $cm^3 s^{-1}$) obtained from maxwellian integratrion of mdf02.</td>
</tr>
<tr>
<td>mdf04/14</td>
<td>ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.</td>
</tr>
<tr>
<td>mdf11</td>
<td>ADAS904 product. Molecular effective coefficients.</td>
</tr>
<tr>
<td>mdf15</td>
<td>Molecular PEC, SXB, DXB.</td>
</tr>
<tr>
<td>mdf25</td>
<td>Mapping Central ADAS adf and mdf formats correlation.</td>
</tr>
<tr>
<td>mdf38</td>
<td>Autoionization and predissociation rates.</td>
</tr>
</tbody>
</table>
Formats

- **mdf00**: General information. Vibrational energies. FC factors. A-values.
- **mdf02**: Cross sections and rates obtained from external sources or calculations.
- **mdf33/34**: ADAS902 product. Rates (upsilons and \(cm^3 s^{-1}\)) obtained from maxwellian integration of mdf02.
- **mdf04/14**: ADAS903 product. Maxwellian rates completed with EIQIP and EICIP to be used in population models.
- **mdf11**: ADAS904 product. Molecular effective coefficients.
- **mdf15**: Molecular PEC, SXB, DXB.
- **mdf25**: Mapping Central ADAS adf and mdf formats correlation.
- **mdf38**: Autoionization and predissociation rates.
Molecular Data: H$_2$

- **Excitation data**: There is available data1 that have been checked to be in good agreement with the fitting formulas from Janev.

- **Ionization data**: Only ionization from ground state available.

- **Attachment**: Fitting formulas from Celiberto2 for fitting calculations. Vibrational excitation through resonant attachment.

1R.Janev et al. JUEL 4353 Report, Sept. 2012, ISSN 0944-2952

2Celiberto AD&NDT 77, 161 (2001)
Molecular Data: H_2

- **Excitation data**: There is available data\(^1\) that have been checked to be in good agreement with the fitting formulas from Janev.

- **Ionization data** Only ionization from ground state available.

- **Attachment** Fitting formulas from Celiberto\(^2\) for fitting calculations. Vibrational excitation through resonant attachment.

\(^1\)R.Janev et al. JUEL 4353 Report, Sept. 2012, ISSN 0944-2952

\(^2\)Celiberto AD&NDT 77, 161 (2001)
Molecular Data: H_2

- **Excitation data**: There is available data\(^1\) that have been checked to be in good agreement with the fitting formulas from Janev.

- **Ionization data** Only ionization from ground state available.

- **Attachment** Fitting formulas from Celiberto\(^2\) for fitting calculations. Vibrational excitation through resonant attachment.

\(^1\) R. Janev et al. JUEL 4353 Report, Sept. 2012, ISSN 0944-2952

\(^2\) Celiberto AD&NDT 77, 161 (2001)
Molecular Data: H_2

- **Excitation data**: There is available data\(^1\) that have been checked to be in good agreement with the fitting formulas from Janev.

- **Ionization data** Only ionization from ground state available.

- **Attachment** Fitting formulas from Celiberto\(^2\) for fitting calculations. Vibrational excitation through resonant attachment.

\(^1\)R.Janev et al. JUEL 4353 Report, Sept. 2012, ISSN 0944-2952

\(^2\)Celiberto AD&NDT 77, 161 (2001)
Molecular Data: H₂

- **Dissociative Attachment** Available calculations from Atems and Wadehra³ and Celiberto (also compiled by Janev et al.).

- **Double excited** There are not cross sections calculation. No information in cross sections for autoionization.

- **Predissociation** Only rates available. Can be a significant branching ratio. Dependence on rotational states.

- **Metastable** Only excitation and attachment data (no ionization) available.

Molecular Data: H_2

- **Dissociative Attachment** Available calculations from Atems and Wadehra3 and Celiberto (also compiled by Janev et al.).

- **Double excited** There are not cross sections calculation. No information in cross sections for autoionization.

- **Predissociation** Only rates available. Can be a significant branching ratio. Dependence on rotational states.

- **Metastable** Only excitation and attachment data (no ionization) available.

Molecular Data: H$_2$

- **Dissociative Attachment** Available calculations from Atems and Wadehra3 and Celiberto (also compiled by Janev et al.).

- **Double excited** There are not cross sections calculation. No information in cross sections for autoionization.

- **Predissociation** Only rates available. Can be a significant branching ratio. Dependence on rotational states.

- **Metastable** Only excitation and attachment data (no ionization) available.

Molecular Data: H₂

- **Dissociative Attachment** Available calculations from Atems and Wadehra\(^3\) and Celiberto (also compiled by Janev et al.).

- **Double excited** There are not cross sections calculation. No information in cross sections for autoionization.

- **Predissociation** Only rates available. Can be a significant branching ratio. Dependence on rotational states.

- **Metastable** Only excitation and attachment data (no ionization) available.
ADAS903 matrix completion

- EIQIP\(^4\) (bound-bound collisional IP) is used for excitation inside a molecular specie.
- ECIP\(^5\) (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.
- Calculation are performed over vibronic levels and summed in case of electronic resolution.
- EIQIP uses A-values to calculate the oscillator strengths so Franck-Condon factors unitarity is fullfilled.
- Energy gaps are aproximated by the minimun point of the potential energy difference. No storage of full potential is needed.

ADAS903 matrix completion

- EIQIP4 (bound-bound collisional IP) is used for excitation inside a molecular specie.
- ECIP5 (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.
- Calculation are performed over vibronic levels and summed in case of electronic resolution.
- EIQIP uses A-values to calculate the oscillator strengths so Franck-Condon factors unitarity is fullfilled.
- Energy gaps are aproximated by the minimum point of the potential energy difference. No storage of full potential is needed.

ADAS903 matrix completion

- EIQIP\(^4\) (bound-bound collisional IP) is used for excitation inside a molecular specie.
- ECIP\(^5\) (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.

- Calculation are performed over vibronic levels and summed in case of electronic resolution.
- EIQIP uses A-values to calculate the oscillator strengths so Franck-Condon factors unitarity is fullfilled.
- Energy gaps are aproximated by the minimum point of the potential energy difference. No storage of full potential is needed.

ADAS903 matrix completion

- EIQIP\(^4\) (bound-bound collisional IP) is used for excitation inside a molecular specie.
- ECIP\(^5\) (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.
- Calculation are performed over vibronic levels and summed in case of electronic resolution.
 - EIQIP uses A-values to calculate the oscillator strengths so Franck-Condon factors unitarity is fullfilled.
 - Energy gaps are approximated by the minimum point of the potential energy difference. No storage of full potential is needed.

ADAS903 matrix completion

- **EIQIP**\(^4\) (bound-bound collisional IP) is used for excitation inside a molecular specie.
- **ECIP**\(^5\) (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.
- Calculation are performed over vibronic levels and summed in case of electronic resolution.
- EIQIP uses A-values to calculate the oscillator strengths so Franck- Condon factors unitarity is fullfilled.
- Energy gaps are approximated by the minimum point of the potential energy difference. No storage of full potential is needed.

ADAS903 matrix completion

- EIQIP4 (bound-bound collisional IP) is used for excitation inside a molecular specie.
- ECIP5 (bound-free collisional IP) has been used for ionization (dissociative and non-dissociative) and dissociative excitation. It is needed a better optimization for the extension to molecules.
- Calculation are performed over vibronic levels and summed in case of electronic resolution.
- EIQIP uses A-values to calculate the oscillator strengths so Franck-Condon factors unitarity is fullfilled.
- Energy gaps are aproximated by the minimum point of the potential energy difference. No storage of full potential is needed.

ADAS903: filling the matrix

INPUT & RULES → READ MDF33 FILES → LOOK FOR NEW PROCESSES

LOOP IN PROCESSES

MDF33

LOOP IN PROCESSES

DIPOLAR RULES

IP CALCULATIONS

ORDER MATRIX DISCHARD O'S

MDF04
Why filling the matrix?

Maxwellian time constant: \(\tau = \frac{1}{n_e \langle \sigma v \rangle} \)

\[
\begin{align*}
H_2(X, \nu = 0) & \rightarrow H + H \\
H_2(X, \sum \nu \nu) & \rightarrow H + H
\end{align*}
\]

Processes from excited vibrational levels are needed.
Motivation

ADAS904: Solving CR

- Dissociative processes are all that go to dissociation (diss. excitation, ionisation, CX, recombination ...).

- Metastables are always vibrationally resolved $\rightarrow 150 \times 150$ maximum dimension of metastable matrix.

- Autoionisation and predissociation are included at this stage from *mdf38* format data.

- Atomic dissociation products equilibrium ionisation balance is included in the CR model.
Dissociative processes are all that go to dissociation (diss. excitation, ionisation, CX, recombination . . .).

Metastables are always vibrationally resolved
\[\rightarrow 150 \times 150 \] maximum dimension of metastable matrix.

Autoionisation and predissociation are included at this stage from \textit{mdf38} format data.

Atomic dissociation products equilibrium ionisation balance is included in the CR model.
ADAS904: Solving CR

- Dissociative processes are all that go to dissociation (diss. excitation, ionisation, CX, recombination ...).

- Metastables are allways vibrationally resolved
 \[\rightarrow 150 \times 150 \text{ maximum dimension of metastable matrix.} \]

- Autoionisation and predissociation are included at this stage from \emph{mdf38} format data.

- Atomic dissociation products equilibrium ionisation balance is included in the CR model.
ADAS904: Solving CR

- Dissociative processes are all that go to dissociation (diss. excitation, ionisation, CX, recombination . . .).

- Metastables are always vibrationally resolved → 150×150 maximum dimension of metastable matrix.

- Autoionisation and predissociation are included at this stage from mdf38 format data.

- Atomic dissociation products equilibrium ionisation balance is included in the CR model.
ADAS904: Solving CR

- Dissociative processes are all that go to dissociation (diss. excitation, ionisation, CX, recombination . . .).

- Metastables are always vibrationally resolved $\rightarrow 150 \times 150$ maximum dimension of metastable matrix.

- Autoionisation and predissociation are included at this stage from mdf38 format data.

- Atomic dissociation products equilibrium ionisation balance is included in the CR model.
Molecules CR model

\[
A^{q-1} \leftrightarrow A^q \leftrightarrow A^{q+1}
\]

\[
M^q \leftrightarrow M^{q+1} \leftrightarrow \ldots \leftrightarrow M^{q+n}
\]

\[
A^q \leftrightarrow A^{q+1} \leftrightarrow \ldots \leftrightarrow A^{q+n}
\]
ADAS904: The population model

\[
\frac{dN_X}{dt} = \begin{pmatrix}
H_2 & \sim 0 & 0 \\
\neq 0 & H_2^+ & 0 \\
\neq 0 & \neq 0 & H(n), H^+
\end{pmatrix} \times \begin{pmatrix}
N_X \\
\Gamma_{in}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\cdots \\
\text{states} \\
\cdots
\end{pmatrix}
\]

\(\Gamma_{in}\) can correspond to the collisional terms from constant populations.
ADAS904: CR model

1. **INPUT & RULES**
 - Read MDF04 files

2. **MDF04**
 - Loop in (Te, Ti), Tm, Ne
 - Fill the matrices

3. **MDF04, MDF11**
 - Eff. coeffs.
 - Write eff. coefficients

4. **CALCULATIONS OF POPULATIONS**
 - Effective coeffs.
 - Output

5. **OUTPUT**
 - SxB, PEC, DXB

6. **LOOP IN PROCESSES**
 - MDF11, MDF15
Outline

1. Motivation

2. Molecular ADAS routines: ADAS900
 - General view
 - Molecular Data
 - CR Model

3. Results

4. Summary
Effective coefficients

CR dissociation from ground state

CR ionization from ground state to ground state
Population

\[T_e = 25 \text{ eV} \]
Outline

1. Motivation

2. Molecular ADAS routines: ADAS900
 - General view
 - Molecular Data
 - CR Model

3. Results

4. Summary
Summary

- New molecular collisional-radiative tools have been developed and will be soon available.

- The tools can be extended to other diatomic molecules other than H₂.

- Molecular data are the main problem in building such a model.

- Checking and developing of method of calculations under way.

- Easy implementation of results in models (ADAS structure).