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Atomic data and MCF devices

How does atomic data and plasma models and the quality of these data and models influence
the fusion programme:

» Diagnostics — interpretation and design.
» Plasma performance.

Any predictive work must be strongly rooted in properly describing the behaviour of current
devices:

» Transport — how well does this scale?.
» Plasma parameters — how realistic are the predictions.

Consider a number of germane questions:

» Will beam shine-through be a problem with the ITER-like wall in JET?
» How much radiated power will 0.1% of oxygen produce in ITER?

» What crystal is best for measuring core tungsten emission in JET?

» What is the spectral emission of high-Z species in ITER divertor?
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Beam shine through question

The new ITER-like wall of JET will have a tungsten PFC beam dump.

How will this affect the radiated power and plasma resistivity?
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Model of carbon behaviour

We can get reasonable agreement between a simple model and measured concentrations:
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However modelling the large increase on 6°* immediately following the beam switch-on is still
a challenge.
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What about Tungsten?

» Take carbon as a starting point...

» Note that low Z has an outward
convection
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Radiated power contribution from oxygen

Oxygen radiation is a measure of the vessel leak rate.

What power is radiated from a reasonable concentration in various operating scenarios?
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Scenario #2 is a full bore plasma with an inductive current of
15MA in the flat top producing 400MW of fusion power at Q=10
for approximately 400s. It is an ELMy H-mode plasma with 40MW
of additional heating. Radiated power during burn is predicted to

be 47TMW.
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Scenario #3a is similar in size and produces a similar amount
of fusion power. It is a hybrid regime with 13.8MA current and
73MW of additional heating. Predicted radiated power during
burn is 55MW.
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What transport to use?

Transport determines the impurity distribution in the plasma which directly affects where the
radiation is emitted. There are no robust empirical rules to predict the impurity transport
coefficients. However, extrapolating from existing machines, the possible range of values can
be confidently chosen.
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The hybrid transport is less well known due to the internal transport barrier. For this study the
transport coefficients deduced for JET hybrid discharges [Giroud04] are used directly without

any scaling.
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Radiated power profiles

For a 0.1% oxygen concentration:
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Compared to the expected total radiated power of 40—-60MW, the modelled radiated powers of
1-2MW are not serious, but neither are they quite negligible.
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Core tungsten radiation in JET?

With probable core contamination of tungsten in JET the X-ray spectrometer will be upgraded
to view W line emission for concentration and ion temperature measurements.

Which is the most suitable crystal to use?
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Consider Ni-like Tungsten : W 467

This ionisation stage should have a wide radial profiles for ‘typical’ electron temperatures.
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Note that the line at A ~ 3.89A (3s523d'? 1S — 3523p°3d!%5d?! !P) fits within the 0.8% spectral
range for the current Bragg angle for a Quartz 110 crystal.
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The W46* 3.89A line

This line is a little ‘exotic’ in that a deep 3p electron is promoted to an n = 5 level.
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Transitions with a promoted 3p electron will not be as strong the principal lines but may be
measurable. The n = 5 upper level does not help!
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Can the W 46* 3.89A line be seen?

The intensity of any Tungsten line depends on the concentration in the core plasma.

Pulse No: 61097
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Take #61097 as a typical/favoured shot:

» 3.5keV and 5 x 10%%cm—3.
» XCS Ni concentration of ~ 1074
» Assume W concentration of ~ 107>,

» Assume steady state W and Ni
conditions.

The ‘strong’ Tungsten line at 5.68A is competitive with the Ni w-line but the exotic W line at

3.89A may be too weak.
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The suitability of the other crystals

If the constraint of not moving the KX1 arm is relaxed then lines from Ni-like, Cu-like and
Zn-like transitions can be viewed on two crystals.

Suitable lines from W*** — W*é* 9 W** — W** emissivity coefficients
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» The Si1011 crystal appears to be the most useful.

» PET possible but has a lower sensitivity.
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Is Tungsten the only high Z element likely in ITER (or JET)?

Last year’s workshop prediction: there would be a detectable spectroscopic signature between

W (Z=74) and Re (Z=75).

Tungsten and Rhenium
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More analysis and experimental data is required.
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