R-matrix calculations along iso-electronic sequences

Michael Witthoeft, Allan Whiteford, Nigel Badnell University of Strathclyde

Introduction

• Create a baseline data set for electron-impact excitation which is a step above distorted wave

- First sequence is F-like from Ne⁺ to Kr²⁷⁺
- •Other priorities are: H-, He-, Li-, O-, and Ne-like sequences
- •R-matrix script is used to simplify the process

•Analysis tools have been developed to handle the large amount of data

R-matrix Script

- A flexible Perl script to automate an R-matrix calculation
- works for serial or parallel machines
- calculation sequence:
 - AUTOSCTRUCTURE (structure and high-energy limit points)
 - ICFT R-matrix calculation
 - produce adf04 file (fully commented)
- supports radiation damping
- no Auger damping yet

RAP base package:

- a set of Python routines that read and manipulate the R-matrix results
- reads in:
 - adf04 files
 - AUTOSTRUCTURE output files (GF values)
 - TCCDW.DAT files (term coupling coefficients)

RAP GUI:

- Graphical interface to the routines in the base package
- Produce data files and plots of energies and effective collision strengths

F-like Sequence

- ICFT calculation with 87 terms and 195 levels.
- contains the configurations
 - $2s^2 2p^5$ (two fine-structure levels)
 - 2s 2p⁶
 - 2s² 2p⁴ 3l
 - 2s 2p⁵ 3l
 - 2s² 2p⁴ 4l
- Scaling parameters for the structure are optimized for each individual ion.
- All ions from Ne⁺ to Kr²⁷⁺

<u>Structure</u>

A look at the energy level distribution for several ions along the sequence. Note the gap forming between the n=3 and n=4 levels as Z increases. We also see that the energies scale as z^2 for the higher charges.

<u>Structure</u>

gf-values are also a useful metric for determining the quality of the structure. Here we compare to values calculated by Fawcett (1984) using relativistic Hartree-Fock theory. For this transition, we see excellent agreement along the entire sequence.

Fawcett, ADNDT 31, 495 (1984)

Structure

We see a larger difference between the calculations for this 3s transition, but still has good general agreement.

Energy mesh convergence

First overlap region: Si⁵⁺ and P⁶⁺ for 10⁻⁴ and 5x10⁻⁵ z² Ry meshes

A useful tool to explore differences between two calculations for all the transitions is the scatter plot. The plot below is for Si^{5+} at a temperature of $7.2x10^4$ K.

The advantage of these plots is that large differences pop out. Note: only 2.5% of the transitions disagree by more than 10% at this temperature.

<u>Comparisons</u>

Excitation calculations have been done for a number of ions along the F-like sequence. Work before 1994 has been comprehensively reviewed by A. K. Bhatia. Mohan et al. performed LS R-matrix calculations, in a series of papers, for many ions along the sequence (Mg³⁺, Si⁵⁺, S⁷⁺, Cl⁸⁺, Ti¹³⁺, Fe¹⁷⁺, and Ni¹⁹⁺)

Our main comparisons will be with:

• fine-structure transition over the sequence (Saraph & Tully, 1994, Berrington et al., 1998)

- Ne⁺ (Griffin et al., 2001)
- Fe^{17+} (Witthoeft et al., 2006)

Saraph & Tully, A&A 107, **29** (1994)

Bhatia, ADNDT 57, 253 (1994)

Griffin et al., JPB **34**, 4401 (2001)

Witthoeft et al., A&A 446, 361 (2006)

Fine-structure

 $T = 10^4 z^2 K$

Fine-structure

 $T = 10^3 z^2 K$

F-like Fe

Compare the F-like Fe calculation with a recent calculation by Witthoeft et al. (2006). The previous work consists of two calculations; one with an n=3 target expansion and the other up to n=4.

conf.	old n=3	old n=4	new
2s2 2p5	\checkmark	\checkmark	✓
2s 2p6	✓	✓	\checkmark
2s2 2p4 3l	✓	✓	\checkmark
2s 2p5 3l	✓	✓	\checkmark
2p6 3l	✓	✓	
2s2 2p4 4l		✓	\checkmark
2s 2p5 4l		✓	
2p6 4l		✓	

Witthoeft et al., A&A 446, 361 (2006)

Transitions from the ground level:

2s² 2p⁴ 3l - 2s² 2p⁴ 3l

2s² 2p⁴ 3l – 2s 2p⁵ 3l

2s 2p⁵ 3l – 2s 2p⁵ 3l

