

Atomic Data in ITER Edge Modelling

A.S. Kukushkin¹, H.D. Pacher², D. Reiter³, V.Kotov³

¹ ITER Organization, Cadarache, France
 ² INRS EMT, Varennes, Canada
 ³ FZ Jülich, Jülich, Germany

ADAS Workshop, Ringberg, October 2007

Introduction

ITER: modelling is the way of extrapolation from present experiments A&M&S data necessary to model the plasma and wall interaction data on surface interaction equally important!

Composition of the ITER plasma:

fusion reactions	→	D, T, He
mixed materials on PFCs	→	Be, C, W
impurity seeding for core control	→	Ne, Ar
diagnostics	→	Li,
off-normal events	\rightarrow	O, Fe, Cu, .

Plasma conditions

Core: fully ionized (but NBI, pellets?), T ~ 0.2 - 20 keV, n ~ 10^{20} m⁻³ Edge: many neutrals, T ~ 0.1 - 200 eV, n ~ $10^{18} - 10^{21}$ m⁻³

ITER Modelling

Edge plasma outside the separatrix (B2-Eirene):

essentially 2D

"dirty" plasma (neutrals, impurities, wall interactions) multi-fluid model for ions & electrons

 \rightarrow a separate fluid for each charge state

Monte-Carlo model for neutrals

 \rightarrow geometry detail, full set of reactions

 \rightarrow neutral-neutral collisions included

 \rightarrow radiation transport can be included

Core plasma inside the separatrix (ASTRA):

1D transport across 2D flux surfaces

No wall interactions, simplified neutral model

Focus on the transport detail (transport barrier, pedestal, etc.)

Edge properties and limitations via effective boundary conditions (parameterized B2-Eirene results)

This presentation: mostly edge

Fuel: D & T, Atoms and Molecules

Atoms: c-x, excitation, ionization, recombination well known (?) *3-body recombination and multi-step ionization important* neutral-neutral collisions: important in ITER, gas-like behaviour radiation (Lyman series) transport: affects plasma parameters, less important for engineering data (power loading, pumping)

Molecules: more complex physics, large variety of reactions
 elastic collisions with ions (energy transfer to targets – strong effect)
 → importance of vibrational excitation (affect dissociation rate)
 Vibrational excitation of DT? Of T₂?
 Excitation of dissociation products? – important (MAR story)
 Rotational excitation – energy transport? Effect on cross-sections?

Excitation of atoms and molecules reflected and desorbed from walls? -- could be important; no data available?

An example of the effect of gas dynamics on ITER divertor performance

Peak power loading: one of the critical parameters of the design

--- previous, linear ITER model --- ... + Neutral-Neutral Collisions (NNC) -- ... + Detailed Molecular Kinetics -- ... + Radiation Opacity

Strong effect of Neutral-Neutral collisions (blue vs. green)!

See: Kukushkin A., et. al, Nucl. Fusion, **45**, 608 (2005) D.Reiter, Kotov V., et. al, J. Nucl. Mat., **363-365**, 649 (2007)

V. Kotov, A. Kukushkin et. al, Gas dynamics effects and divertor performance

Sensitivity to Target Shape: Geometry Variation

Density scans for 5 bottom shapes, different "V" Weak variation in target loading, fuelling and pumping conditions with non-linear neutral transport

→ It is less important to maintain a closed V-shape near strike point than previous linear neutral transport model predicted Linear model: neutrals fly freely outside the plasma in PFR. Wall geometry important for transport, neutral pressure not. Non-linear model: short mean-free-path, neutrals do not "feel" solid structures. Neutral pressure determines the transport.

Reaction Product: He

Recycling impurity → neutrals important Ionization, excitation, recombination well known (?) Multi-step processes unimportant: 1st excited level close to ionisation

Elastic collisions with D, T ions

- important, drastically improve He removal

Resonance charge exchange

– unimportant, too little He in the plasma (?)Charge exchange with D, T ions:

from available data, the cross-sections low; accuracy?

Importance of meta-stable states?

Elastic Collisions He + D⁺

Core: He-He collisions negligible \rightarrow transport ~ linear

 $\rightarrow n_{\text{He}} = n_{\text{He}}^{c} + n_{\text{He}}^{e} + n_{\text{He}}^{n}$ $\left(\begin{array}{c} \text{fusion/} + \text{separatrix} + \text{influx} \\ \text{core transport} & \text{He}^{++} & \text{He}^{0} \end{array}\right)$ Edge: thermal force \rightarrow He neutralisation in outer SOL He⁰ fluxes: competition between Γ_{pump} and $\Gamma_{core} + \Gamma_{SOL}$

250

300

Elastic collisions heat He up $\rightarrow \Gamma$'s increase

EC on: q_{pk} the same, c_{He} down Γ_{pump} wins – drop of the cross-section above 50 eV?

Surface Materials: Be

Physical sputtering: rates known (?) No molecules → no chemical erosion (despite carbides?) Ionization, recombination: data exist; accuracy? Excitation, multi-step ionization? Elastic collisions with D, T ions? Surface chemistry (Be-C, Be-W, Be-H) Limited experience in ITER modelling so far

Surface Materials: C

Hydrocarbons \rightarrow chemical erosion a major source Physical sputtering: rates known (?)

Atoms:

Ionization, recombination: data exist; accuracy? Excitation, multi-step ionization? Elastic collisions with D, T ions?

Ions:

Ionization, recombination, excitation well known? Charge exchange with D, T unimportant?

Hydrocarbons:

May determine T accumulation in the machine

Extremely complex system, isotope effects?

Needs thorough bookkeeping

No experience in ITER modelling so far

C: Deposition and Re-Erosion (DRE model)

C deposition: danger of T co-deposition Re-erosion of deposits affects both surface and plasma properties

Model: compare deposition and would-be erosion rates of C

deposition-dominated: normal C surface erosion-dominated: original metal, but no C absorption

iterate until converges \rightarrow BC consistent with the solution

Const $Y_{ch} \rightarrow \exists C$ deposition in the main chamber

 Y_{ch}×8 for deposits
 →no C deposition (flux dependence?)
 Full C wall closer to DRE than metal wall
 (different scaling for metal!)

CONTRACTION OF THE PARTY OF THE

wall factor

C0 (full)

C1-Yx1 C1-Yx2

C1-Yx4

f...

0.84

0.83

0.71

Surface Materials: W

Physical sputtering: rates known (?)
No molecules → no chemical erosion (despite carbides?)
Ionization, recombination: no full data set; accuracy?
Excitation, multi-step ionization?
Elastic collisions with D, T ions?

probably unimportant, atomic mass too large
Too many charge states, usual multi-fluid approach inefficient
→ "bundle" certain charge states together for transport
→ technology of effective rates is needed
Surface properties: hydrogen uptake, interaction with Be, C?

Limited experience in ITER modelling so far (DIVIMP – test particle approximation)

Seeded Impurities: Ne, Ar(, Kr, Xe)

Atomic species, no chemistry Ne, Ar very probable candidates for core plasma control; Kr, Xe might cause problems with transmutations, although radiate better

Ne: ionisation, recombination data exist for all charge states; accuracy? detailed excitation data? multi-step ionization? elastic collisions with D, T ions – some data exist; accuracy?

Ar: the same state as for Ne, probably less reliable?

Data for the core conditions equally important

Conclusions

Edge modelling is now an essential part of the ITER project design analysis

development of the operation strategy

It relies strongly on the A&M&S data supplied by the community the results depend on the consistency and accuracy of the data (MAR, molecule collisions/excitation, deposition/re-erosion, ...) Most important groups of species:

Fuel (D, T, D₂, T₂, DT): data for the edge (A&M) and beam (A). *Isotope effects in molecules!*

Ash (He): data for the edge

Wall produced, light (Be, C): data for the edge. *Hydrocarbons!*

Wall produced, heavy (W): data for the edge & core. *Bundling!*

Seeded (Ne, Ar): data for the edge and core

Structural materials (Fe, Cu, ...): data for the edge and core to study effect of off-normal events

Data on surface interactions equally important for all groups