The current status of the Lithium beam diagnostic at ASDEX Upgrade

Elisabeth Wolfrum
Josef Schweinzer
Matthias Reich
Rainer Fischer

Max Planck Institut für Plasmaphysik
Garching, Germany
Outline

Experimental setup

Edge ion temperatures
CX with He$^{2+}$
CX with D$^+$

Edge ion densities

Edge electron densities
ELM resolved profiles
LID evaluation with Bayes integrated concept
Wide Filters: high temporal resolution
Experimental setup

Beam emission spectroscopy

- Electron density measurement
- Li\(^0\) (2p-2s) @ 670.8 nm

Li-beam
- 30 – 80 keV, 2-4 mA
- ∅12 mm

Charge exchange spectroscopy

- Ion temperature measurement
- LIT
- M.Reich - Thesis

- Ion density measurement
- LIS
EM CCD improves availability of T_i measurements.

- Signal/noise ratio much improved due to EM technology
- Same radial position
- Measured temperatures agree, $T_i = 370$ eV
- Temporal resolution: 10 channels (LOS) on one CCD with 4 ms continuously

PI Micromax CCD camera

PhotonMax EM CCD camera

Extended serial register: Electron multiplication via impact ionisation

active CCD area

frame transfer

‘traditional’ amplifier
1 MHz, 5 MHz

EM amplifier
5 MHz, 10 MHz
Edge ion temperature profiles

- Spatial resolution ~ 5 mm
- Temporal resolution not available: Signal must be integrated over 1-2 s.
- He concentration > 10%.
- L-mode o.k.
- H-mode: only for $f_{ELM} < 100$ Hz.
New: CX measurements also possible with D$^+$ ions.

Raw data: spectrum

- No ELMs or regular ELMs
- ELMs have to be cut out
- $\Delta t > 500$ ms integration time
- Fit difficult because centre is always dominated by photon statistics of passive line emission
- Inclusion of CXS_fit in progress
Edge ion densities, examples

#18055, \(t = 3-5 \) s

Core charge exchange Li-beam, ADAS Li-beam, no collisional mixing Li-beam, fully mixed

#20463, \(t = 3.9-5 \) s

Electrons, ions, electrons He^{2+}
Li^0 + plasma → Li(2p – 2s)@670.8nm

Lithium beam attenuation code:

\[\frac{dN_i(z)}{dz} = [n_e(z) \cdot a_{ij}(T(z)) + b_{ij}] \cdot N_j(z) \]

- \(N_i \): relative occupation of state \(i \) (i=2s, 2p, …4f, Li^+)
- \(a_{ij} \): rate coefficients
- \(b_{ij} \): Einstein coefficients

\(a_{ij} \): Inelastic collisions with protons, electrons and impurities

\(b_{ij} \): radiative transitions

References:
Electron density measurements

Measured profile + errors

Produce fit to data

This relative profile $\text{Li}_{2p}(z)$ is directly related to occupation number of Li(2p).

$\alpha \text{Li}_{2p}(z) = N_{2p}(z)$, $\alpha = \text{const.}$

α is determined via 2 boundary conditions:

$N_i(z=0) = \delta_{1i}$

$N_1(z_{\text{end}}) = 0$

Use second equation of

$$\frac{dN_i(z)}{dz} = [n_e(z) \cdot a_{ij}(T(z)) + b_{ij}] \cdot N_j(z)$$

to get n_e.

Lithium beam attenuation code

Singularity near maximum of Li(2p) profile.
ELM resolved with int times ~ 1ms

Time interval extended to include Raus – scan:

- LID with 1 ms temp. resolution
- Shot: 12200 t1 = 3.400 t2 = 5.200
- Only data in window rel. to ELM: -3.5 ms to -1.5 ms

Electron density $[10^{19} \text{ m}^{-3}]$
Binning of raw signal relative to ELM yields density profiles across ELM.

- Choose time interval with regular ELMs
- Determine for every t in LIB signal:
 \(\Delta t \) to previous ELM
 \(\Delta t \) to next ELM
- Add all signals with same temporal distance to ELM
- Calculate density profile

Attention:
ELMs should have about same size.
ELM shotfile must be checked carefully: no missed or additional ELMs.
Lithium beam must be very stable: no sparks.
n_e gradient in ETB region is recovered after 3 ms.
Rainer Fischer: integrated concept

Determine electron density profile given

Measured data of Li I (2p-2s) profile and their likelihoods

! accurate error determination!

Measurements of other diagnostics.

Description of profile:
13 knots using Hermite polynomials

Additional information:
n_e profile monotonic

Lithium beam attenuation code

Li I (2p-2s) profile

χ^2 fit to the data * factor α

to determine 13 knots and α.
Electron density profile evaluation now beyond point of singularity.

Medium core density:
- Pedestal well determined.
- Temporal resolution: 1 ms
- So far LID density evaluation stops just before turn.
- New: high certainty of profile up to $\rho_{pol} = 0.93$

High core density:
- So far LID density evaluation stops in SOL.
- New: reliable profile up to $\rho_{pol} = 0.96$
Latest improvement: broader filters

- New filters: 2 nm FWHM, before 0.5 nm
- Easier to change to different beam velocity (no tilt adjustment necessary)
- Higher transmission (85%, before 50%)
- Signal ~ factor 10 larger
- Now 1.5 – 4 sec with 20 kHz (before 5 kHz)

#22287, 3-4s, t_exp = 4ms, LIA channel 4

![Graph showing emission lines and changes in signal strength and acquisition time]

Allows faster data acquisition:
1.5 – 4 sec with 20 kHz (before 5 kHz)
Summary

Ion temperature profiles
- No temporal resolution ($\Delta t > 500$ ms)
- Good spatial resolution (5 mm)
- C: concentration now too low (< 0.4 %)
- He: good data if concentration > 10%
- D: good data if plasma quiet, e.g. ohmic or L-mode

Ion density profiles
- Collisional mixing is important at the edge.

Electron density profiles (main business!)
- Excellent temporal resolution (~ 1 ms).
- Li-beam electron densities can resolve ELM, if several light profiles are binned relative to ELM.
- Integrated concept: edge pedestal densities can be determined up to $n_e^{\text{PED}} \sim 7 \times 10^{19}$ m$^{-3}$.
- New filters give more photons, more flexibility and allow faster data acquisition (20 kHz).