Atomic structure and dynamics

-- need and requirements for accurate atomic calculations

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Isotope shifts and hyperfine structures
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- UV/EUV light sources and lithography
- Diagnostics of astro physical and laboratory plasmas
- \varTheta
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Relativistic effects in heavy and superheavy elements

... to be considered in accurate atomic calculations

S. Fritzsche, MPI-K and GSI Darmstadt 11th October 2007

Atomic interactions are well known:

- QED as the well established basis
- Atomic shell modell
 - $\psi(\mathbf{r},\theta,\phi) = \mathsf{R}_{nl}(\mathbf{r}) \mathsf{Y}_{lm}(\theta,\phi),$
 - "aufbau principle": Successive filling of subshells and shells

Outline of this talk:

- i) "Electronic correlations": The challenge of open shells
- ii) (Super-) Heavy elements: Rapid increase of relativity
- iii) Multiphoton processes in high-Z systems
- iv) Nonradiative transitions and autoionization

"Electronic correlations"

-- Fine-structure of open-shell configurations

"Electronic correlations"

-- Fine-structure of open-shell configurations

"Electronic correlations"

-- Fine-structure of open-shell configurations

Wave function (CSF) expansions for open-shell structures

Extreme Static Electromagnetic Fields

Relativistic and quantum-electrodynamical corrections -- Test of QED in hydrogen-like uranium

Relativistic and quantum-electrodynamical corrections -- Test of QED in hydrogen-like uranium

S. Fritzsche, JESRP 114-116 (2001) 1155; Phys. Scr. T100 (2002) 46

RATIP Relativistic Atomic Transition and Ionization Properties (CPC library)

$$\boldsymbol{\psi}_{\boldsymbol{\alpha}}(PJM) = \sum_{r}^{n_{c}} c_{r}(\boldsymbol{\alpha}) \left| \boldsymbol{\gamma}_{r} PJM \right\rangle$$

Many-electron basis (wave function expansions)

- Construction and classification of N-particle Hilbert spaces
- Shell model: Systematically enlarged CSF basis

Interactions

- Dirac-Coulomb Hamiltonian
- Breit interactions + QED
- Electron continuum; scattering phases

• Coherence transfer and Rydberg dynamics

Relativistic CI wave functions including QED estimates and mass polarization

RELCI, CPC 148 (2002) 103

LSJ spectroscopic notation from jj-coupled computations

LSJ, CPC 157 (2003) 239

Auger rates, angular distributions and spin polarization; level widths

AUGER

Photoionization cross sections and (non-dipole) angular parameters

PHOTO

Radiative and dielectronic recombination; angle-angle correlations

Atomic structure and dynamics

-- need and requirements for accurate atomic calculations

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Isotope shifts and hyperfine structures
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- UV/EUV light sources and lithography
- Diagnostics of astro physical and laboratory plasmas
- \varTheta
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Systematic multiconfiguration calculations

(CI, MCHF, MCDF)

Up to now:

- Term- and hyperfine structure for light elements (Z <=28)</p>
- Resonance and intercombination lines
- Lifetimes

Example : EUV spectra of multiple-charged iron from the sun

Spectra involving open d-shells

Iron is one of the most abundant heavy elements in the universe(opacity project)

Fe X ... XIV $3s 3p^{n+1}$, $3s^2 3p^{n-1} 3d$ $\Delta E / E < 1\%$ $\Delta A / A = 5 .. 20\%$ Improved by factor 5 !

- Line identification
- Improved level structure
- Reliable lifetimes

Fe X: 31 low-lying levels (Dong et al., MNRAS, 1999) Fe XI: 47 levels (Fritzsche et al., MNRAS, 2000)

Atomic structure and dynamics

-- need and requirements for accurate atomic calculations

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Isotope shifts and hyperfine structures
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- UV/EUV light sources and lithography
- Diagnostics of astro physical and laboratory plasmas
- \varTheta
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Optical spectroscopy at Fermium (Z = 100)

-- first observation and classification of atomic levels

Atomic Physics:

- Atomic Structure
- Ionization potentials

Nuclear Physics:

- Nuclear spins
- Moments
- Changes of charge radii

TABLE I. Results of MCDF calculations. Accuracy of transition energy $\overline{\nu}$ is $\Delta \overline{\nu} = \pm 2400 \text{ cm}^{-1}$, $A_{ki} = \text{Einstein coefficient}$, classification according to the largest coefficient *c* in the CSF expansion.

No.	$\bar{\nu} \ (\mathrm{cm}^{-1})$	J	$A_{ki} \mathrm{s}^{-1}$	Config.	Term	$ c ^{2}$
1	0	6	0	$5f^{12}7s^2$	${}^{3}H_{6}^{e}$	0.96
2	25 226	6	$1.89 imes 10^{6}$	$5f^{12}7s7p$	${}^5I_6^{\circ}$	0.46
3	25 471	5	$1.28 imes10^{6}$	$5f^{12}7s7p$	${}^{5}G_{5}^{o}$	0.34
4	27 394	6	$2.43 imes 10^{8}$	$5f^{12}7s7p$	${}^{3}H_{6}^{o}$	0.62
5	27 633	5	$1.98 imes 10^{8}$	$5f^{12}7s7p$	${}^{3}G_{5}^{o}$	0.60
6	27 802	7	$3.67 imes 10^{8}$	$5f^{12}7s7p$	$^{3}I_{7}^{o}$	0.66

Low-lying resonances for heavy and super-heavy elements ... for lutetium (Z=71) and lawrencium (Z=103)

TABLE I. The transition energies in cm⁻¹ of $nd^2 D_{3/2} - (n + 1)p^2 P_{1/2,3/2}^o$ and the size of CSF expansions for Lu (n = 5) and Lr (n = 6).

Expansion	${}^{2}D_{3/2} - {}^{2}P_{1/2}^{o}$	${}^{2}D_{3/2} - {}^{2}P^{o}_{3/2}$	CSF $({}^{2}D_{3/2}/{}^{2}P_{1/2}^{o}/{}^{2}P_{3/2}^{o})$							
Lu										
$VV + CV(4f^{14})$	3989	7276	4354/2071/3813							
$VV + CV(5p^{6}4f^{14})$	8004	11 483	5600/2764/5073							
$VV + [(CV + CC)(5p^{6}4f^{14})]$	3857	7130	128 763/36 974/100 277							
$VV + [(CV + CC) (4d^{10}5s^25p^64f^{14})]$	4186	7462	305 717/87 241/236 554							
RCC [7]	3828	7140								
DFT [10]	3862									
Exp.	4136	7476								
DHF Breit Correction	87	53								
DHF Breit & QED Correction	76	43								
Lr										
$VV + CV(5f^{14})$	-1298	9137	3659/1842/3338							
$VV + CV(6p^{6}5f^{14})$	1339	12 761	4708/2495/4495							
$VV + [(CV + CC)(6p^{6}5f^{14})]$	-1953	6469	125 325/37 333/97 500							
$VV + [(CV + CC)(5d^{10}6s^26p^65f^{14})]$	-1127	7807	330 252/95 969/246 376							
RCC	-1388	6960								
RCC with Breit	-1263	7010								
DHF Breit Correction	97	4								
DHF Breit & QED Correction	59	-26								

RCC: Eliav et al., Phys. Rev. A52 (1995) 291; DFT: Vosko & Chevary, J. Phys. B26 (1993) 873

Low-lying resonances for heavy and super-heavy elements -- oscillator strengths in different gauges

		$^{2}D_{3/2} - ^{2}P_{1/2}^{o}$			$^{2}D_{3/2} - ^{2}P^{o}_{3/2}$		
Expansion	gf_L	gf_V	Scaled gf_L	gf_L	gf_V	Scaled gf_L	
		Lu					
$VV + CV(4f^{14})$	0.0304	0.0582	0.0315	0.0111	0.0219	0.0114	
$VV + CV(5p^{6}4f^{14})$	0.0511	0.1552	0.0264	0.0144	0.0467	0.0094	
$VV + [(CV + CC)(5p^{6}4f^{14})]$	0.0908	0.3835	0.0974	0.0322	0.0856	0.0337	
$VV + [(CV + CC)(4d^{10}5s^25p^64f^{14})]$	0.1043	0.3345	0.1031	0.0354	0.0742	0.0355	
		Lr					
$VV + CV(5f^{14})$	-0.0162	-0.0076		0.0210	0.0313		
$VV + CV(6p^{6}5f^{14})$	0.0144	0.2359		0.0227	0.0839		
$VV + [(CV + CC)(6p^65f^{14})]$	-0.0624	-0.0002		0.0414	0.0867		
$VV + [(CV + CC)(5d^{10}6s^26p^65f^{14})]$	-0.0378	-0.0024		0.0519	0.0685		

TABLE II. The oscillator strengths of $nd^{-2}D_{3/2} - (n+1)p^{-2}P_{1/2,3/2}^{o}$ for Lu (n = 5) and Lr (n = 6).

Good accuracy of the (atomic) energies is a necessary, but not a sufficient criterion !

Atomic structure and dynamics

-- need and requirements for accurate atomic calculations

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Isotope shifts and hyperfine structures
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- UV/EUV light sources and lithography
- Diagnostics of astro physical and laboratory plasmas
- \varTheta
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Two-photon decay of highly-charged ions

Two-photon decay of highly-charged ions

Atomic structure and dynamics

-- need and requirements for accurate atomic calculations

- Analysis and interpretation of optical and x-ray spectra (astro physics)
- Isotope shifts and hyperfine structures
- Frequency standards and atomic clocks
- Spectroscopy on heavy and superheavy elements (actinides, transactinides)
- Nonradiative (inner-shell) transitions and autoionization
- Ion recombination and photon emission
- Multi-photon processes
- UV/EUV light sources and lithography
- Diagnostics of astro physical and laboratory plasmas
- \varTheta
- "Complete experiments"
- Parity nonconservation (PNC)
- Search for electric dipole moments

Auger emission of excited atomic states

Wentzel's ansatz: Autoionization is caused by electron-electron interactions which cannot be considered in an one-particle picture.

$$\sum_{i < j} \frac{1}{r_{ij}} - \sum_{i} u(r_i)$$

Ideal tool for a better understanding of electronic correlations !

Coherence transfer in the Auger cascades of noble gases -- a signature of the "atomic double slit"

Decay branches are independent; "path" can be determined by measuring the energy spectrum.

Collaboration with Nicolai Kabachnik (Bielefeld); experiments by Kyioshi Ueda and coworkers at SPring8, Japan

Excitation and two-step Auger cascades in noble gases

Relativity enters here in two ways !

Excitation and two-step Auger cascades in noble gases

Auger emission of excited atomic states

Wentzel's ansatz: Autoionization is caused by electron-electron interactions which cannot be considered in an one-particle picture.

$$\sum_{i < j} \frac{1}{r_{ij}} + b(i, j) - \sum_{i} u(r_{i})$$

Breit interaction

Summary and outlook

- Accurate atomic data are needed (more or less urgently) for a wide range of applications.
- Atomic physics still provides a great "playground" for studying many-particle processes and electronic correlations.
- New numerical techniques have to meet the requirements for a whole "class of systems" and not only provide 'proofs of principle'.
- Complexity of (atomic) many-particle systems: Development of ab-initio methods cannot always be separated from the processes and properties; overlap with experimental progress.
- Present and future challenges:

Improved treatment of open-shell structures and highly excited states Coupling of bound-state densities to the continuum

(capture and emission of electrons, multi-photon processes, Fano resonances, "complete experiments")