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Relativistic effects in heavy and superheavy elements
                                               ... to be considered in accurate atomic calculations
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Atomic interactions are well known:

  QED as the well established basis

  Atomic shell modell

   ψ (r,θ,φ) = R
nl
(r) Y

lm
(θ,φ),  

   „aufbau principle“: Successive filling of subshells and shells

Outline of this talk:
i)    „Electronic correlations“: The challenge of open shells

ii)   (Super-) Heavy elements: Rapid increase of relativity

iii)   Multiphoton processes in high-Z systems

iv)   Nonradiative transitions and autoionization
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                             -- Fine-structure of open-shell configurations
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Wave function (CSF) expansions for open-shell structures



 

Laser fields:
1022 W/cm2

Uranium

Hydrogen

∆E ≈ 10-6 eV
Z∙α ≈ 10-2

∆E ≈ 500 eV
Z∙α ≈ 1

Self Energy

Vacuum 
Polarization 

Extreme Static Electromagnetic Fields  



  

Relativistic and quantum-electrodynamical corrections
                                                     -- Test of QED in hydrogen-like uranium
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Theory:         463.95 eV A. Gumberidze, PhD thesis (2003),
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  Energies & Wave functions

    MCHF
  GRASP(-92)
  „Desclaux“ 
    Coupled-Cluster



  

RATIP
Relativistic Atomic Transition 

and Ionization Properties
(CPC library)

Relativistic CI wave functions 
including QED estimates and
mass polarization 

RELCI, CPC 148 (2002) 103

LSJ spectroscopic notation
from jj-coupled 
computations 

LSJ, CPC  157 (2003) 239

Auger rates, angular distribu-
tions and spin polarization; 
level widths 

AUGER

Photoionization cross sect-
ions and (non-dipole) angular 
parameters

PHOTO

Radiative and dielectronic 
recombination; angle-angle 
correlations 

...

S. Fritzsche, JESRP 114-116 (2001) 1155; Phys. Scr.  T100 (2002) 46

Many-electron basis (wave function expansions)

 Construction and classification of N-particle Hilbert    
        spaces

 Shell model: Systematically enlarged CSF basis

 Interactions

 Dirac-Coulomb Hamiltonian 

 Breit interactions + QED

 Electron continuum; scattering phases

  Coherence transfer and Rydberg dynamics

 P J M  = ∑
r

nc

cr  ∣r P J M 〉
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Systematic multiconfiguration calculations

Up to now:

Benchmarks:
He, Li-like, C2+

(CI, MCHF, MCDF)(CI, MCHF, MCDF)

 Term- and hyperfine structure for light elements (Z <=28)

 Resonance and intercombination lines

 Lifetimes

Example : EUV spectra of multiple-charged iron from the sun
Spectra involving open d-shells Iron is one of the most abundant heavy elements

in the universe(opacity project)

Fe X ... XIV  3s 3p n+1, 3s2 3p n-1 3d

 Line identification
 Improved level structure
 Reliable lifetimesFe X: 31 low-lying levels (Dong et al., MNRAS, 1999)

Fe XI: 47 levels (Fritzsche et al., MNRAS, 2000)

∆ E / E  <  1%
∆ A / A  =  5 .. 20 %
               Improved by factor 5 !
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Optical spectroscopy at Fermium (Z = 100)
                      -- first observation and classification of atomic levels

Atomic Physics:   

 Atomic Structure

 Ionization potentials

Nuclear Physics:  

 Nuclear spins

 Moments

 Changes of charge radii

Determination of hfs 
and isotope shifts

5f12 7s2,      Jp =6+              3H6e

5f12 7s 7p,  Jp = 6-, 5          5G6,5o   

5f12 7s 7p,  Jp = 6-, 5-,7-   3H6,5,7o  (?)



  

Low-lying resonances for heavy and super-heavy elements
                                                   ...  for lutetium (Z=71) and lawrencium (Z=103)

RCC: Eliav et al.., Phys. Rev. A52 (1995) 291;         DFT: Vosko & Chevary, J. Phys. B26  (1993) 873

Zhou & Froese Fischer., Phys. Rev. Lett. 88 (2002) 183001



  
Good accuracy of the (atomic) energies is 
a necessary, but not a sufficient criterion !

Low-lying resonances for heavy and super-heavy elements
                                                            --  oscillator strengths in different gauges

Zhou & Froese Fischer., Phys. Rev. Lett. 88 (2002) 183001
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Two-photon decay of highly-charged ions

E1E1 

 tot≈ E1E1=8.229⋅Z 6

1s
1/2

2s
1/2

A.Surzhykov et al. PRA 71  (2004) 012034



  

Two-photon decay of highly-charged ions

E1E1 

 tot≈ E1E1=8.229⋅Z 6

1s
1/2

2s
1/2

W ~1cos2

Higher multipoles give rise to
an asymetrical shift

A.Surzhykov et al. PRA 71  (2004) 012034

+ E1M2 + M1M1+E2E2 + E2M1....
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Auger emission of excited atomic states 

A

A+(K-1)

A++(L-2)

εAuger

L

K

excitation decay

energy

H = ∑
i

hi  u r i H = ∑
i

hi  ∑
i j

1
r ij

Ideal tool for a better understanding of electronic correlations !

Wentzel's ansatz:  Autoionization is caused by electron-electron interactions   
                                  which cannot be considered in an one-particle picture.

∑
i j

1
r ij
− ∑

i

ur i



  

Coherence transfer in the Auger cascades of noble gases       

                                                  -- a signature of the „atomic double slit“ 

resonantly excited
noble gas

   np --> (n+2)s, (n+2)d

Well isolated resonances !

ω12 >> Γ

A2+

Decay branches are independent; „path“ can be determined
 by measuring the energy spectrum.

Collaboration with Nicolai Kabachnik (Bielefeld); 
experiments by Kyioshi Ueda and coworkers at SPring8, Japan



  

Excitation and two-step Auger cascades in noble gases

Ne:   500 : 1
Ar:      80 : 1
Kr:      25 : 1
Xe:       8 : 1

   Aresonance

Aintercombination

Photoabsorption:

    Ar (2p6 3s2 3p6 1S
0
) + hν          Ar*(2p5 3s2 3p6 4s 1P

1
)

First decay:

    Ar*(1P
1
)            Ar*+(3s 3p5 (1,3P) 4s 2P or 4P) + e

A1 

Second decay:

    Ar*+ (3s 3p5 (1P) 4s 2P
1/2,3/2

)         Ar2+ (3p4 3P or 1D) + e
A2

Xenon: 4d-16p  1,3P1          5s-26p; 5s5p56p

Relativity enters here in two ways !



  

Excitation and two-step Auger cascades in noble gases

Ne:   500 : 1
Ar:      80 : 1
Kr:      25 : 1
Xe:       8 : 1

Radiative and Auger processes are not longer independent !

   Aresonance

Aintercombination

Photoabsorption:

    Ar (2p6 3s2 3p6 1S
0
) + hν          Ar*(2p5 3s2 3p6 4s 1P

1
)

First decay:

    Ar*(1P
1
)            Ar*+(3s 3p5 (1,3P) 4s 2P or 4P) + e

A1 

Second decay:

    Ar*+ (3s 3p5 (1P) 4s 2P
1/2,3/2

)         Ar2+ (3p4 3P or 1D) + e
A2

excitation hν
ω12 < Γ

subsequent decay

Xenon: 4d-16p  1,3P1          5s-26p; 5s5p56p

Kitajima et al., JPB 34 (2001) 3829; 
JPB 35 (2002) 3327.



  

Auger emission of excited atomic states 

A

A+(K-1)

A++(L-2)

εAuger

L

K

excitation decay

energy

Breit interaction

Wentzel's ansatz:  Autoionization is caused by electron-electron interactions   
                                  which cannot be considered in an one-particle picture.

∑
i j

1
r ij
 b i , j  − ∑

i

u r i

H DCB = ∑
i

hDi   ∑
i j

1
r ij
 ∑

i j

1
2r ij
[i j 

i r i j r j 
r ij
2 ]



  

Summary and outlook

  Accurate atomic data are needed (more or less urgently) for a wide range of applications.

  Atomic physics still provides a great „playground“ for studying many-particle processes 
        and electronic correlations.

  New numerical techniques have to meet the requirements for a whole „class of systems“               
        and not only provide 'proofs of principle'.

  Complexity of (atomic) many-particle systems: Development of ab-initio methods cannot
        always be separated from the processes and properties; overlap with experimental
        progress.

  Present and future challenges: 

              Improved treatment of open-shell structures and highly excited states

              Coupling of bound-state densities to the continuum 

                        (capture and emission of electrons, multi-photon processes,

                         Fano resonances, „complete experiments“)

  



  


