Reference ionization and recombination cross section measurements

The 14th ADAS Workshop, Ringberg Castle, 4-7 October 2009

Outline

I. Electron impact ionization of ions*

II. Dielectronic recombination*

colliding beams experiments from few-electron systems to complex ions

* A. Müller, Adv. At. Mol. Opt. Phys. 55, 293 (2008)

Outline

I. Electron impact ionization of ions*

II. Dielectronic recombination*

colliding beams experiments from few-electron systems to complex ions

* A. Müller, Adv. At. Mol. Opt. Phys. 55, 293 (2008)

there is a lot of work to be done

Electron impact ionization of ions

crossed beams of electrons and ions with well defined mass and charge

Electron impact ionization of Li⁺ ions

Conclusion so far

Present state of the art theory can predict

cross sections for

direct single ionization of few-electron ions

with high accuracy

Ionization of complex ions: Xe²⁺

Assumptions, expectations general wisdom

Theory is expected to provide better predictions for more highly charged ions in an iso-electronic sequence

Assumptions, expectations general wisdom

Theory is expected to provide better predictions for more highly charged ions in an iso-electronic sequence

DW calculations for the direct and the excitationautoionization contributions should be good for highly charged ions

Electron impact ionization of Xe⁸⁺

Ionization of a highly charged ion: Xe²²⁺

Ionization of a highly charged ion: Xe²²⁺

Similar discrepancies found for other highly charged ions

Merged-beam electron-ion recombination

Recombination of Li-like ions: F⁶⁺

Electron-ion collision energy (eV)

Recombination of few-electron ions

Theoretical treatment of individual resonance groups with large computational effort can deliver satisfying results

Recombination of few-electron ions

Theoretical treatment of individual resonance groups with large computational effort can deliver satisfying results

This cannot be extended to whole series of (Rydberg) resonances

Recombination of M-shell ions: Ti⁴⁺ (3s² 3p⁶)

Recombination of U²⁸⁺ (5s² 5p²)

Recombination of Au²⁵⁺ (4f⁸)

Huge cross sections no individual resonances in spite of high resolution

Summary and plans for the future

Total cross sections for single ionization and for recombination of few-electron ions are quite well understood; theoretical data of benchmark quality are (becoming) available

Summary and plans for the future

Total cross sections for single ionization and for recombination of few-electron ions are quite well understood; theoretical data of benchmark quality are (becoming) available

Understanding of collisions and structure of complex ions is a challenge for experiment and theory

Summary and plans for the future

Total cross sections for single ionization and for recombination of few-electron ions are quite well understood; theoretical data of benchmark quality are (becoming) available

Understanding of collisions and structure of complex ions is a challenge for experiment and theory

We plan to carry out storage ring recombination and crossed beams ionization experiments with W^{q+} ions

Acknowledgements

IAMP, Giessen

Alfred Müller **Stefan Schippers** Kurt Huber Sandor Ricz **Ticia Ricsoka Fike Schmidt** Alexander Borovik **Dietrich Bernhardt Kristof Holste Pierre-Michel Hillenbrand** Jan Rudolph Pascal Reiter Pascal Scholz Joachim Rausch Jonas Hellhund Christine Hornung

Collaboration of IAMP with:

Atomic Physics Groups at **GSI**, Darmstadt MPI-K, Heidelberg University of Stockholm Physics Department, University of Nevada, Reno Columbia University, Astronomy & Astrophysics, New York Scientific Support Groups at TSR, MPI-K, Heidelberg ESR, GSI, Darmstadt ALS, LBL, Berkeley CRYRING, MSL, Stockholm Atomic Theory Groups at **Giessen University** University of Stockholm University of Strathclyde Queen's University, Belfast Auburn University Curtin University, Perth And others occasionally