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Outline

• Breit–Pauli R-matrix intermediate coupling frame transformation approach (ICFT)

applied along isoelectronic sequences, for astrophysics and magnetic fusion — Guiyun

Liang (Strathclyde).

• Dirac R-matrix for heavy species (for ITER, laser plasmas): Dirac R-matrix with

Pseudo-States (DRMPS) and excitation of neutral Gold — Connor Ballance (Auburn)
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RM ICFT: along isoelectronic sequences

• Create a baseline database for electron-impact excitation which includes resonant

enhancement: all ions of a sequence up to Zn (or Kr).

• Consider shell boundaries: H-, He-, Li- and F-, Ne-, Na-.

• Use (Perl) script to automate R-matrix calculation — requires reliable, robust codes.

• Works on serial or parallel machines.

• Uses autostructure (for structure and infinite energy limit points Bethe/Born) and

ICFT R-matrix approach.

• End product: adf04 file.

• R-matrix analysis package (RAP) has been developed by Mike Witthoeft (Python-based

GUI) to validate the large amount of data.
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• F-like sequence: see Witthoeft, Whiteford & Badnell J.Phys.B40, 2969 (2007).

• Na-like sequence:

Outer-Shell: (nl → n′l′) for n, n′ = 3−6 — see Liang, Whiteford & Badnell Astron.

Astrophys. 500, 1263 (2009)

Inner-shell: 134CC (2p63l, 2p53l3l′, ex 3d2) allowing for Auger and radiation

damping of resonances — Liang, Whiteford & Badnell J.Phys.B (At Press)

• Ne-like: 209CC 2sp2pqnl (n = 2 − 5) and 2p22p5n′l′(n′ = 6, 7 l′ = 0 − 2) —

Liang & Badnell (In progress)

• H-like and He-like sequences in ADAS — Witthoeft & Whiteford, methodology as per

previously published for single ions (i.e. allows for radiation damping.)

• Li-like: simpler version of Na-like (TBD)
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Fully relativistic (Dirac) scattering

It is deceptively simple to write down the scattering problem to be solved

Ψ = AΣ

Z

ν

ψνφ . (1)

The antisymmetric total wavefunction for the target-plus-colliding particle Ψ is expanded

in terms of a known complete basis of target states ψν. The expansion coefficients φ

representing the colliding particle (projectile) are then to be freely determined. Complete

solutions:

• DRMPS

• Relativistic convergent close-coupling (RCCC)

• Dirac B-spline R-matrix (DBSR)

All use relativistic analogues of the non-relativistic (orbital) approach.
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Dirac R-matrix with pseudo-states (DRMPS)

L-spinors (Grant, 2007) are the relativistic analogue of the Sturmians.

Proto-type L-spinors are described by large and small components

ψEκm(r) =
1

r

»

PEκ(r)χκm(θ, ϕ)

iQEκ(r)χ−κm(θ, ϕ)

–

. (2)

The χκm(θ, ϕ) denote the usual spin-angle 2-spinors while the radial parts satisfy

„

d
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+
κ
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PEκ (4)

for a point charge z.
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The apparent principal quantum number Nnrκ is given by

N
2
nrκ

= n
2
− 2nr(|κ| − γ) (5)

where nr = n − |κ| , γ2 = κ2 − z2α2/4 and n and κ are the principal and combined

angular quantum numbers respectively. (κ = l for j = l − 1/2 and κ = −l − 1 for

j = l + 1/2 where l, j are the orbital and total angular momenta quantum numbers

respectively.) E denotes the total energy and so the non–rest-mass energy ε is given by

ε = E − 2/α
2
= 2/α

2

2

4

 

1 −
α2λ2z2

4

!1/2

− 1

3

5 . (6)

Note: λ here corresponds to that used in the non-relativistic (NR) pseudo-states formulation

— just expand the above for α small to obtain ε ≈ −λ2z2/4 again. Following the non-

relativistic approach, we will take λ ≈ 1. Again, ‘physical’ relativistic Coulomb functions

are recovered on setting λ = 2/N .

Analytic solutions f±
nrκ

(with unit normalization) can be written in terms of the Laguerre

polynomials L2γ
nr

and L2γ
nr−1, then {P,Q} = (1 ± α2/2E)1/2f±

nrκ
satisfy the Dirac

small-r relative normalization.
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Crucial difference from NR case

Consider the Rayleigh quotient

E(φ) =
< φ|H|φ >

< φ|φ >
. (7)

A Ritz variational leads to

δE = 0 ⇐⇒ (H − E)φ = 0 (8)

and so stationary values of E correspond to eigenstates of H.

In the case of the Schrödinger Hamiltonian the stationary value is a minimum and the

eigenstates form an electron representation.

In the case of the Dirac Hamiltonian the eigenstates can represent electrons or positrons.

Normal atomic structure calculations start with an electron basis representation so as to

ensure an electron eigenstate representation (there are no positron solutions for −2c2 <

E < 0.)
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Now, we must treat electrons and positrons on an equal footing otherwise one obtains

spurious solutions: ‘variational collapse’.

Trial wavefunctions are taken to be linear combinations of paired two-component basis sets

ψEκm(r) =

»

ψ+
Eκm(r)

iψ−
Eκm(r)

–

=
1

r

"

PN
nr=1 c

+
nr
f+
nrκ

(r)χκm(θ, ϕ)

i
PN

nr=1 c
−
nr
f−
nrκ(r)

χ−κm(θ, ϕ)

#

. (9)

So, for N basis functions we seek 2N solutions — N -electron and N -positron.

Application of the Rayleigh–Ritz method to the Dirac-Coulomb Hamiltonian

cα · p + βmec
2
+ U(r) (10)

leads to the Galerkin equation for the c±i which can be written in matrix form as

» `

c2 − E/2
´

S
++ + U

++ cΠ+−

cΠ−+ −
`

c2 + E/2
´

S
−− + U

−−

– »

c
+

c
−

–

= 0 . (11)

S±±
mn denote the Gram overlap terms, U±±

mn denote the potential terms and Π±∓
mn denote

the kinetic terms.
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Solution of the Galerkin equation constitutes a generalized eigenvalue problem.

We retain the N -electron solutions but have no futher use for the N -positron solutions

(currently).

The ‘one-electron’ approach is easily implemented for a multi-electron atom in, for example

grasp0, since multi-electron wavefunctions are built from one-electron wavefunctions.

• Some R-matrix (DARC) niceties:

We first Schmidt orthogonalize the pseudo-state basis (it is initially linearly independent,

but orthogonal on non-unit weight) and to any other target orbitals. Then we have two,

separate, orthonormal bases: the pseudo-state (target) and the continuum. We form a

linearly independent orthogonal continuum basis by a straightforward generalization, to

two components, of the NR case. ((N+1)-electron target states are added to the total

wavefunction in compensation.) Similarly, for the transformation of the (now, non-diagonal)

Buttle correction back to a diagonal representation.

This approach has been implemented in grasp0 and darc by Badnell J.Phys.B v41

175202 (2008).
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Electron-impact excitation of Gold

5d
10

6s
2
S1/2 → 5d

9
6s

2 2
D3/2 (12)

Measurement by Maslov et al [Phys. Rev. A78, 042713 (2008)] compared with results

of non-orthogonal DBSR calculations carried-out by Zatsarinny & Bartschat (Ibid.) with

large configuration interaction but small close-coupling expansions (10,15,32CC).
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Large-scale CI orthogonal orbital calculations with DARC:

Green curve: 6CC with only (N+1)-e− target configurations required by orthogonality

Blue curve: 6CC with all possible (N+1)-e− target configurations, i.e. large correlation

Red curve: 100CC with all possible (N+1)-e− target configurations

A work in progress...
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The isoelectronic work was supported by the UK STFC via the Atomic Processes for
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Heavy species collaborators:

Connor Ballance (Auburn)

Ian Grant (Oxford)

Patrick Norrington (QUB)
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