Progress Report on atomic data calculation at INFLPR

V. Stancalie, G. Buica, V. Pais, and collaborators INFLPR/ Association EURATOM MEdC

Collaborators:

- ITM-TF AMNSD, ISIP (many labs.);
- QUB (P.G. Burke, V. M. Burke, M .P .Scott, A. Hibbert, C. Ramsbottom);
- LIXAM (A. Klisnick);
- IAEA-CRP (inertial fusion-many labs.);

Theoretical models and numerical methods:

- RMATX II for electron excitation of Co IV ions (*ab-initio* non-perturbative approach) (ICAMDATA2007)
- R-matrix Floquet theory and code for DR (POP2005 *a*,*b*, NIMB 2009, LPB 2009)
- (TDSE) Multiphoton ionization of Ca atoms by linearly and circularly polarized laser field using *ab initio* nonperturbative method, above threshold ionization(ATI), (PRA 2006)

Multiphoton Ionization of *Ca* by Linearly and Circularly Polarized Laser Fields

We theoretically study the ionization of the *Ca* atom by the third harmonic of a Ti:Sapphire laser pulse,

The *Ca* atom (Z=20) is treated as a *two-active*-electron system: the ionic core (the nucleus and the 18 inner-shell electrons $1s^22s^22p^63s^23p^6$) and two valence electrons $4s^2$

The time-dependent Schrödinger equation is numerically integrated on a **basis** of discretized atomic states .

Motivation:

to provide ab-initio data for multiphoton ionization of *Ca* by *linearly* (LP) and *circularly polarized* (CP) laser pulses,

to determine the origin of the substructures appearing in the photoelectron energy spectrum (PES) of *Ca*.

(a) Two-photon ionization yield as a function of the peak intensity by *LP* (solid) and *CP* (dashed) laser pulses. (b) The ratio of the ionization yield by the *CP*, Y_{CP} to that by the *LP* light, Y_{LP}

Photoelectron energy spectra of *Ca* by *LP* and *CP* laser pulses: $\lambda = 267 \text{ nm}$ (E_{ph}= 4.65 eV), $\tau = 20 \text{ fs}$, $I = 1 \times 10^{13} \text{ W/cm}^2$

•The ATI substructures (a),(b),(c),(d) are equally spaced by the photon energy $E_{ph} = 4.65 \text{ eV}$! •The substructures are due to the real excitation of some bound states $4snp^{1}P,n=4,5,6,...etc$ by the laser pulse.

Concluding remarks (I)

- We studied the multiphoton ionization of *Ca* by *LP* and *CP* laser pulses: Ionization yield and PES.
- We clarified the correct origin of the PES *substructures* by the third harmonic of a Ti-Sapphire laser pulse.
- The *Ca* atom has a *dense* level structure!
- The ATI *substructures* are due to the real excitation of some bound states 4snp 1P, n=4,5,6,...etc by the laser pulse.

The resulting complex energies: LIDS structures: $\Delta n = 0$: 1s²2sns-1s²2pns

 $\Delta n = 2$ transitions in CIV: $1s^2 2s 5s \rightarrow 1s^2 2p 7s$

Scaling with the effective quantum number:

n	I _{LIDS} (W/cm ²)	n ^{*3} Ei(LIDS)		
5	5.5 10 ¹¹	0.17		
6	1.9 10 ¹¹	0.15		
7	0.9 10 ¹¹	0.15		
8	0.4 10 ¹¹	0.15		
9	0.25 1011	0.15		
10	0.2 1011	0.15		
11	0.04 1011	0.14		
12	0.07 1011	0.16		

n	I _{LIDS} (W/cm ²)	n* ³ E _{i(LIDS)}
9	3.5 10 ¹¹	0.195
10	9.0 10 ¹¹	0.197
11	4.8 10 ¹⁰	0.198

Consequences of the one-photon LIDS

- trapping" of population at some non zero field intensity;
- The rate of ionisation of the 'ground' excited Rydberg state will first increase with intensity and then exhibit a typical "stabilisation", namely, a decrease of the ionisation rate with increasing intensity >>> Population transfer from the excited to autoionizing state

Electron excitation of Co³⁺(1s²2s²2p⁶3s²3p⁶3d⁶ (⁵D^e))

Target models

A) $3p^{6}3d^{6}$, $3p^{6}3d^{5}4s$, $3p^{6}3d^{5}4p$ (136 LS-coupled states) (3 confs.) B) A + $3p^{4}3d^{8}$, $3p^{4}3d^{7}4s$, $3p^{4}3d^{7}4p$ (136 LS-coupled states)(6confs.) C) B + $3p^{5}3d^{7}$, $3p^{6}3d^{4}4s^{2}$, $3p^{6}3d^{4}4s4p$ (184-LS coupled states) (9confs.)

- 3p⁶3d⁶, 3p⁶3d⁵4s, 3p⁶3d⁵4p, 3p⁶3d⁵4d
- 3p⁶3d⁶, 3d⁵4s, 3d⁵4p, 3p⁵3d⁷
- 3p⁶3d⁶, 3d⁵4s, 3d⁵4p, 3d⁴4s4p
- 3p⁶3d⁶, 3d⁵4s, 3d⁵4p, 3d⁴4s²
- 3p⁶3d⁶, 3d⁵4s, 3d⁵4p, 3d⁴4p²

Summary of optimizations

- In all of the models, the 1s, 2s, 2p, 3s, 3p, 3d radial functions have been taken from the Hartree-Fock ground state 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ ⁵D, given in the tables of Clementi and Roetti (1974).
- Using the non-relativistic Schrodinger Hamiltonian, we have established the wave functions by optimizing further three orbitals on various L = 2, 3 and 4 states.
- the 4s function was obtained by optimizing a 4s orbital on the 3d⁵(⁶S) 4s ⁷S state; hence this function will be a 'real' 4s orbital.
- The same process has been adopted to obtain 'real' function for 4p orbital, which has been optimized on $3d^{5}(^{6}S) 4p ^{7}P^{0}$
- The '*correcting*' 4d orbital has been introduced by optimizing 4d on ⁷D⁰.

$$C_{jnl}, I_{jnl}, \xi j_{nl}$$
 { 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d}

$$P_{nl}(r) = \sum_{j} C_{jnl} r^{I_{jnl}} \exp(-\xi_{jnl} r)$$

Table1. Summary of Co TV target models.					
Label	Number	Configurations			
	of configs.				
1	3	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p			
2	4	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁵ 3d ⁷			
3	4	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3d ⁴ 4s4p			
4	4	$3d^{6}$, $3d^{2}4s$, $3d^{2}4p$, $3d^{4}4s^{2}$			
5	6	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁴ 3d ⁸ , 3p ⁴ 3d ⁷ 4s, 3p ⁴ 3d ⁷ 4p			
6	9	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁴ 3d ⁸ , 3p ⁴ 3d ⁷ 4s, 3p ⁴ 3d ⁷ 4p, 3p ⁵ 3d ⁷ , 3p ⁵ 3d ⁶ 4s, 3p ⁵ 3d ⁶ 4p			

Commence of Clar TV taxa at models

Table 3. The number of LS-coupled scattering channels for even and odd parity associated with the total angular momentum value L = 2 in e^{-1} - Co³⁺ collisions using the three-configuration model for specific spin symmetries in the present 136-state calculation.

	Singlets	Triplets	Quintets	Septets
L	S = 0	S = 1	S = 2	<i>S</i> = 3
		Even parity		
2	117	147	41	3
		Odd parity		
	105	144	38	1

Table 4. Summary of the total number of coupled channels associated with the total angular momentum value L = 2 in e^{-1} - collision of Co IV states of particular spin (S_i) belonging to $3d^{6}$, 3d⁵4s, 3d⁵4p configurations.

$S_i = 1/2$		$S_i = 3/2$		$S_i = 5/2$		$S_i = 7/2$	
Even	Odd	Even	Odd	Even	Odd	Even	Odd
parity	parity	parity	parity	parity	parity	parity	parity
264	269	188	182	44	39	3	1

2.

Concluding remarks (II):

- 1. The target state energy levels for all 136 LS levels of calculation A has been obtained;
- The levels for the states formed by the first 3 configurations overlap each other in energy but the 4s² states all lie higher. However, the 4s², 4s4p and 3p⁵3d⁷ levels overlap each other
- 3. The 4d states are lying, as expected, between the 4p and 4s² states but overlapping both;
- Agreement between theory and experiment is reasonably good, the energy differences of low-lying levels usually agreeing to within 15% of each other. An exception to this is the theoretical energy level for the second state which differs from the exp. value by 20%;
- 5. Theoretical values for the 22nd, 44th, 51st, levels are in the wrong order.

Concluding remarks (III)

- 1. The target state energy levels for all 136 LS levels of **calculation B** has been obtained:
- 2. The addition of the extra CI functions arising from the inclusion of the electronic configuration $3p^53d^7$ did not effect the energy levels of even parity target states, and made very little difference (less than 0.001 Ryd) to the energy levels of the odd parity states.
- 3. Agreement between theory and experiment for the second state was improved to 10%;
- 4. Theoretical values are in good position;
- 5. The target states energy levels for all 136 LS levels of calculation C has been obtained:
- 6. More than 22 LS levels lie in the Co IV continuum, and experimental data are unavailable.

Thank you!