
Allan Whiteford 256 Kelvin Limited
(0.02 eV Limited for fusion people)

Moving ADAS Infrastructure to Python

Overview, approach and objectives

ADAS Workshop, 30th September 2014

ADAS Python Infrastructure

Contents

• Some background.
• Is Python the future?
• GUI programs.
• Callable ADAS:

– running programs,
– extracting data,
– reading ADF files.

• Searching for data.
• Some (radical?) suggestions.
• Next steps.

Allan Whiteford Page 2 of 22

ADAS Python Infrastructure

Some background

• Core ADAS has a heavy reliance on IDL:
– costly for ADAS members,
– element of risk (if it stops being produced),
– sometimes a sticking point for new members,
– was about the only viable option in 1994!

• 20 years later we have more options, we certainly wouldn’t pickIDL if we had to make the decision in 2014.
• Foresight and ongoing policy since the inception of the project haskept the core code in Fortran.
• Converting from IDL to something else doesn’t require a re-writeof (much) atomic physics.

Allan Whiteford Page 3 of 22

ADAS Python Infrastructure

Is Python the future?

• Current position:
– emerging (some would say emerged) as the dominant highlevel language for scientific computing,
– extensive support for arrays in the form of NumPy,
– higher level bundles like SciPy are available,
– already used significantly in fusion and astrophysics.

• Licensing:
– Python is available at no cost,
– permissive license doesn’t restrict ADAS licensing options,
– may need to be careful with (some) GPL libraries.

Allan Whiteford Page 4 of 22

ADAS Python Infrastructure

GUI programs, two approaches

• Native Python GUI:
– numerous options but TkInter and wxPython are probably thefront-runners,
– GTK and Qt also possibilities,
– on top of that require separate plotting libraries.

• Web-based GUI:
– using python as the back-end to an HTML/JS front end,
– slightly more complex in terms of moving parts,
– same requirement of separate plotting libraries,
– closer to current industry approaches in many respects.

Allan Whiteford Page 5 of 22

ADAS Python Infrastructure

GUI approaches, pros and cons

• Native Python GUI has significant technology advantages:
– easier to use, less technology to understand and maintain,
– no complications about local and remote files,
– will (in theory) give faster performance.

• Web-based GUI gives more flexibility in what we can do:
– all the user needs is a web browser,
– can install ADAS centrally in a lab,
– can use ADAS over the Internet,
– can also run locally.

(We’re trying the latter, more ambitious, approach for the pilot but not yet fully committed to it.)
Allan Whiteford Page 6 of 22

ADAS Python Infrastructure

Different approaches for different series

• ADAS Series 2, 3, 4, 7 and most of 8 will quite simply convert ascreen at a time;
– the input→ process→ outputmodel works well here.

• We could do that with other series but, rather, we see this as anopportunity to:
– mothball or completely re-work series 1,
– make series 5 more interactive, focusing on data exploration,
– push series 6 towards extended-ADAS and/or re-think it.

• Scope of the current work is to do a full conversion on ADAS205as a ‘representative’ program and produce suggestions and mockups for how series 5 programs might look.
Allan Whiteford Page 7 of 22

ADAS Python Infrastructure

Callable ADAS

• This project will not seek to retire, deprecate or otherwise endan-ger calling ADAS from IDL;
– run_adas405 + read_adf15 → feeding in to your IDL code tomodel a plasma to give an integrated line emission is safe!

• We want to build an alternative and complementary interface inPython with the following key attributes
– Pythonic API — not just a routine by routine conversion,
– performant — almost certainly running on NumPy,
– fully compatible with IPython,
– building blocks for GUI code,
– able to replace IDL for those who want to do that.

Allan Whiteford Page 8 of 22

ADAS Python Infrastructure

What would it look like?

• We looked (and are still looking) at:
– SunPy,
– FAC,
– MDS+,
– DAG,
– PyQuante,
– efit.py.

• Some of these aren’t very Pythonic in nature - you can see theFortran origins shining through with a hidden state stored deep incommon blocks.
Allan Whiteford Page 9 of 22

ADAS Python Infrastructure

What would it look like?

• So we looked are more core libraries slightly outside of science:
– curl,
– sqlite,
– a POV-ray library,
– PyODE,
– lots of game programming libraries.

• Then we pretty much ignored them all!
• Wewant something which feels like Python but still feels like ADAS.
• (Hence, among other things, everything will still be numbered.)

Ok, let’s look at what it actually looks like...
Allan Whiteford Page 10 of 22

ADAS Python Infrastructure

ADAS Python API

from ADAS import ADF

adf15 = ADF(15,'/path/to/adf15.dat')

adf15.temp=[1,2,5,10,20,50,100]

adf15.dens=[1e13,1e13,1e13,1e13,1e13,1e13]

adf15.block=1

coeff=adf15.extract(); # like read_adf15

#or

raw=adf15.raw(); # like xxdata_15

Hidden features:
• If you ask your question using Python lists, you’ll get the answer ina list (easy for beginners... and to make talks look simpler).
• If you ask your question using NumPy arrays, you’ll get the answerin an array (better performance and all the benefits of NumPy).

Allan Whiteford Page 11 of 22

ADAS Python Infrastructure

ADAS Python API (continued)

from ADAS import ADAS

equil = ADAS(405)

equil.temp=[1,2,5,10,20,50,100]

equil.dens=[1e13,1e13,1e13,1e13,1e13,1e13]

equil.elem='he'

equil.calculate();

stages=equil.stages;

frac=equil.frac;

print frac

• Same story with regards to lists vs NumPy.
• Can also do:

from ADAS import ADAS405

equil = ADAS405()

Allan Whiteford Page 12 of 22

ADAS Python Infrastructure

ADAS Python API (continued)

• Ok, not all things have numbers...
from ADAS.atomic import continuo

brem=continuo()

brem.z0=6

brem.z1=7

brem.tev=3000

brem.wave=6000

brem.calculate()

contff=brem.contff

contin=brem.contin

• or:
contff , contin = brem.calculate()

Allan Whiteford Page 13 of 22

ADAS Python Infrastructure

Midplane emission through a fusion device

• Import some things:
from ADAS import ADAS

from ADAS import ADF

import numpy as np

from scipy.integrate import simps

• Set up grid of radial points on the midplane:
a = 0.7

r=a*(np.arange(101)/50.0 - 1.0)

• Create temperature and density profiles along the midplane:
temp=10.0 + 3e3 * (1-(r/a)**2)

dens=1e10 + 1e13 * (1-(r/a)**2)**0.5

Allan Whiteford Page 14 of 22

ADAS Python Infrastructure

• Calculate fractional ionisation balance of Ne along midplane:
pop = ADAS(405)

pop.temp=temp

pop.dens=dens

pop.elem='ne'

pop.calculate()

frac=pop.frac

• Extract emissivity coefficient for 1s22p 2P− 1s22s 2S transition:
adf = ADF(15,'/.../adas/adf15/pec96#ne/pec96#ne_pju#ne7.dat')

adf.block=1

adf.temp=temp

adf.dens=dens

adf.extract()

coeff=adf.coeff

Allan Whiteford Page 15 of 22

ADAS Python Infrastructure

• Calculate emissivity profile:
emissivity=frac[::,7]*coeff*dens

• Calculate emission by (naive) integration
emission=simps(emissivity,r)

• Output the answer:
print emission

• This calculation gives me an answer of 19.82 using our prototypecode.
• IDL gives me 20.23 for the equivalent commands.
• Difference is just down to the sloppy integration at the end, notADAS — inspection of ’emissivity’ shows them as identical.

Allan Whiteford Page 16 of 22

ADAS Python Infrastructure

An External API?

• Using a combination of:
– a well defined callable ADAS API,
– our interactive programs being web-based.

• We get, almost for free, an ‘external’ API which could be used for:
– a dedicated ADAS node in a modelling cluster which does on-demand atomic physics (e.g. ITM-style scenario),
– similarly but on a lab-wide setting (just as there is an API toget experimental data there can be one to get atomic data),
– optionally (not a personal fan) remote calculations and dataprovision over the internet.

Allan Whiteford Page 17 of 22

ADAS Python Infrastructure

What would it look like?

Send a JSON file (you could use XML if you want) like this:
{'prog': 'adas405',

'elem': 'he',

te: [1, 2, 5, 10, 20, 50, 100],

dens: [1e13,1e13,1e13,1e13,1e13,1e13,1e13]

}

Get back a JSON file like this:
{'frac':

[[1.0E+00,6.3E-01,1.0E-03,3.4E-06,3.5E-08,6.7E-10,6.2E-11],

[3.3E-06,3.7E-01,9.4E-01,3.4E-02,1.1E-03,7.7E-05,2.1E-05],

[5.8E-27,8.1E-10,5.9E-02,9.7E-01,1.0E+00,1.0E+00,1.0E+00]],

'stage':['He+0','He+1','He+ 2']

}

Allan Whiteford Page 18 of 22

ADAS Python Infrastructure

Searching for data

• Navigating the ADAS directory structure is complicated, even forexperienced users.
• We already have OPEN-ADAS which allows searching by:

– full text ‘intelligent’ search,
– cross dataset by ion,
– by specific data class,
– cross dataset by wavelength of interest.

• Moving to a web-based interactive front-end will allow for lots ofre-use of OPEN-ADAS searching.
• Note this doesn’t really resolve the perennial question of ‘whichdata should I use?’

Allan Whiteford Page 19 of 22

ADAS Python Infrastructure

Verb → Noun or Noun → Verb?
• Traditionally, one selects an ADAS program then selects a file.
• However, on a conventional computer system you tend to locate afile then open it.
• No reason why we can’t, for users who want it, turn ADAS insideout whereby you navigate by data then have options of processingthe data in various ADAS programs
• Similarly, the output of ADAS205 (i.e. countour.pass) is typicallyfed into ADAS207. Giving the user the ability for this to happenautomatically will aid in initial comprehension of ADAS workflow.
• This is one possible change but only where users want it — youwould still be able to select by program.

Allan Whiteford Page 20 of 22

ADAS Python Infrastructure

More interactive programs

• ADAS series 5 is used for data exploration and extraction.
• Tied to the input→ process→ output paradigm.
• This is fine for interrogation (from a time reversal point of view,ADAS503 is just an interactive version of read_adf15).
• Being able to interactively alter the transitions, ranges etc. andhave the data appear in real time would help with the exploratoryaspects.
• Output options would still exist for extraction.
• And also perhaps producing an embeddable read_adf15 commandor program following a similar model as laid down in ADAS605.

Allan Whiteford Page 21 of 22

ADAS Python Infrastructure

Summary

• Next steps:
– produce working prototypes of all of the above,
– argue (extensively) with Martin over naming conventions,
– circulate the pilot prototypes more widely,
– await feedback.

• Please let me or Martin know if you’d be willing to test out thevarious programs when they are ready.
• It is likely that this pilot will inform the decision of the steeringcommittee as to whether committing to a full conversion at thistime is prudent or not.

Thank you!

Allan Whiteford Page 22 of 22

