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ADAS Python Infrastructure

Some background

• Core ADAS has a heavy reliance on IDL:
– costly for ADAS members,
– element of risk (if it stops being produced),
– sometimes a sticking point for new members,
– was about the only viable option in 1994!

• 20 years later we have more options, we certainly wouldn’t pickIDL if we had to make the decision in 2014.
• Foresight and ongoing policy since the inception of the project haskept the core code in Fortran.
• Converting from IDL to something else doesn’t require a re-writeof (much) atomic physics.
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ADAS Python Infrastructure

Is Python the future?

• Current position:
– emerging (some would say emerged) as the dominant highlevel language for scientific computing,
– extensive support for arrays in the form of NumPy,
– higher level bundles like SciPy are available,
– already used significantly in fusion and astrophysics.

• Licensing:
– Python is available at no cost,
– permissive license doesn’t restrict ADAS licensing options,
– may need to be careful with (some) GPL libraries.
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ADAS Python Infrastructure

GUI programs, two approaches

• Native Python GUI:
– numerous options but TkInter and wxPython are probably thefront-runners,
– GTK and Qt also possibilities,
– on top of that require separate plotting libraries.

• Web-based GUI:
– using python as the back-end to an HTML/JS front end,
– slightly more complex in terms of moving parts,
– same requirement of separate plotting libraries,
– closer to current industry approaches in many respects.
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ADAS Python Infrastructure

GUI approaches, pros and cons

• Native Python GUI has significant technology advantages:
– easier to use, less technology to understand and maintain,
– no complications about local and remote files,
– will (in theory) give faster performance.

• Web-based GUI gives more flexibility in what we can do:
– all the user needs is a web browser,
– can install ADAS centrally in a lab,
– can use ADAS over the Internet,
– can also run locally.

(We’re trying the latter, more ambitious, approach for the pilot but not yet fully committed to it.)
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ADAS Python Infrastructure

Different approaches for different series

• ADAS Series 2, 3, 4, 7 and most of 8 will quite simply convert ascreen at a time;
– the input→ process→ outputmodel works well here.

• We could do that with other series but, rather, we see this as anopportunity to:
– mothball or completely re-work series 1,
– make series 5 more interactive, focusing on data exploration,
– push series 6 towards extended-ADAS and/or re-think it.

• Scope of the current work is to do a full conversion on ADAS205as a ‘representative’ program and produce suggestions and mockups for how series 5 programs might look.
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ADAS Python Infrastructure

Callable ADAS

• This project will not seek to retire, deprecate or otherwise endan-ger calling ADAS from IDL;
– run_adas405 + read_adf15 → feeding in to your IDL code tomodel a plasma to give an integrated line emission is safe!

• We want to build an alternative and complementary interface inPython with the following key attributes
– Pythonic API — not just a routine by routine conversion,
– performant — almost certainly running on NumPy,
– fully compatible with IPython,
– building blocks for GUI code,
– able to replace IDL for those who want to do that.
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ADAS Python Infrastructure

What would it look like?

• We looked (and are still looking) at:
– SunPy,
– FAC,
– MDS+,
– DAG,
– PyQuante,
– efit.py.

• Some of these aren’t very Pythonic in nature - you can see theFortran origins shining through with a hidden state stored deep incommon blocks.
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ADAS Python Infrastructure

What would it look like?

• So we looked are more core libraries slightly outside of science:
– curl,
– sqlite,
– a POV-ray library,
– PyODE,
– lots of game programming libraries.

• Then we pretty much ignored them all!
• Wewant something which feels like Python but still feels like ADAS.
• (Hence, among other things, everything will still be numbered.)

Ok, let’s look at what it actually looks like...
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ADAS Python Infrastructure

ADAS Python API

from ADAS import ADF

adf15 = ADF(15,'/path/to/adf15.dat')

adf15.temp=[1,2,5,10,20,50,100]

adf15.dens=[1e13,1e13,1e13,1e13,1e13,1e13]

adf15.block=1

coeff=adf15.extract(); # like read_adf15

#or

raw=adf15.raw(); # like xxdata_15

Hidden features:
• If you ask your question using Python lists, you’ll get the answer ina list (easy for beginners... and to make talks look simpler).
• If you ask your question using NumPy arrays, you’ll get the answerin an array (better performance and all the benefits of NumPy).
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ADAS Python Infrastructure

ADAS Python API (continued)

from ADAS import ADAS

equil = ADAS(405)

equil.temp=[1,2,5,10,20,50,100]

equil.dens=[1e13,1e13,1e13,1e13,1e13,1e13]

equil.elem='he'

equil.calculate();

stages=equil.stages;

frac=equil.frac;

print frac

• Same story with regards to lists vs NumPy.
• Can also do:

from ADAS import ADAS405

equil = ADAS405()
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ADAS Python Infrastructure

ADAS Python API (continued)

• Ok, not all things have numbers...
from ADAS.atomic import continuo

brem=continuo()

brem.z0=6

brem.z1=7

brem.tev=3000

brem.wave=6000

brem.calculate()

contff=brem.contff

contin=brem.contin

• or:
contff , contin = brem.calculate()
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ADAS Python Infrastructure

Midplane emission through a fusion device

• Import some things:
from ADAS import ADAS

from ADAS import ADF

import numpy as np

from scipy.integrate import simps

• Set up grid of radial points on the midplane:
a = 0.7

r=a*(np.arange(101)/50.0 - 1.0)

• Create temperature and density profiles along the midplane:
temp=10.0 + 3e3 * (1-(r/a)**2)

dens=1e10 + 1e13 * (1-(r/a)**2)**0.5
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ADAS Python Infrastructure

• Calculate fractional ionisation balance of Ne along midplane:
pop = ADAS(405)

pop.temp=temp

pop.dens=dens

pop.elem='ne'

pop.calculate()

frac=pop.frac

• Extract emissivity coefficient for 1s22p 2P− 1s22s 2S transition:
adf = ADF(15,'/.../adas/adf15/pec96#ne/pec96#ne_pju#ne7.dat')

adf.block=1

adf.temp=temp

adf.dens=dens

adf.extract()

coeff=adf.coeff
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ADAS Python Infrastructure

• Calculate emissivity profile:
emissivity=frac[::,7]*coeff*dens

• Calculate emission by (naive) integration
emission=simps(emissivity,r)

• Output the answer:
print emission

• This calculation gives me an answer of 19.82 using our prototypecode.
• IDL gives me 20.23 for the equivalent commands.
• Difference is just down to the sloppy integration at the end, notADAS — inspection of ’emissivity’ shows them as identical.
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ADAS Python Infrastructure

An External API?

• Using a combination of:
– a well defined callable ADAS API,
– our interactive programs being web-based.

• We get, almost for free, an ‘external’ API which could be used for:
– a dedicated ADAS node in a modelling cluster which does on-demand atomic physics (e.g. ITM-style scenario),
– similarly but on a lab-wide setting (just as there is an API toget experimental data there can be one to get atomic data),
– optionally (not a personal fan) remote calculations and dataprovision over the internet.
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ADAS Python Infrastructure

What would it look like?

Send a JSON file (you could use XML if you want) like this:
{'prog': 'adas405',

'elem': 'he',

te: [ 1, 2, 5, 10, 20, 50, 100],

dens: [1e13,1e13,1e13,1e13,1e13,1e13,1e13]

}

Get back a JSON file like this:
{'frac':

[[1.0E+00,6.3E-01,1.0E-03,3.4E-06,3.5E-08,6.7E-10,6.2E-11],

[3.3E-06,3.7E-01,9.4E-01,3.4E-02,1.1E-03,7.7E-05,2.1E-05],

[5.8E-27,8.1E-10,5.9E-02,9.7E-01,1.0E+00,1.0E+00,1.0E+00]],

'stage':['He+0','He+1','He+ 2']

}
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ADAS Python Infrastructure

Searching for data

• Navigating the ADAS directory structure is complicated, even forexperienced users.
• We already have OPEN-ADAS which allows searching by:

– full text ‘intelligent’ search,
– cross dataset by ion,
– by specific data class,
– cross dataset by wavelength of interest.

• Moving to a web-based interactive front-end will allow for lots ofre-use of OPEN-ADAS searching.
• Note this doesn’t really resolve the perennial question of ‘whichdata should I use?’
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ADAS Python Infrastructure

Verb → Noun or Noun → Verb?
• Traditionally, one selects an ADAS program then selects a file.
• However, on a conventional computer system you tend to locate afile then open it.
• No reason why we can’t, for users who want it, turn ADAS insideout whereby you navigate by data then have options of processingthe data in various ADAS programs
• Similarly, the output of ADAS205 (i.e. countour.pass) is typicallyfed into ADAS207. Giving the user the ability for this to happenautomatically will aid in initial comprehension of ADAS workflow.
• This is one possible change but only where users want it — youwould still be able to select by program.
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ADAS Python Infrastructure

More interactive programs

• ADAS series 5 is used for data exploration and extraction.
• Tied to the input→ process→ output paradigm.
• This is fine for interrogation (from a time reversal point of view,ADAS503 is just an interactive version of read_adf15).
• Being able to interactively alter the transitions, ranges etc. andhave the data appear in real time would help with the exploratoryaspects.
• Output options would still exist for extraction.
• And also perhaps producing an embeddable read_adf15 commandor program following a similar model as laid down in ADAS605.
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Summary

• Next steps:
– produce working prototypes of all of the above,
– argue (extensively) with Martin over naming conventions,
– circulate the pilot prototypes more widely,
– await feedback.

• Please let me or Martin know if you’d be willing to test out thevarious programs when they are ready.
• It is likely that this pilot will inform the decision of the steeringcommittee as to whether committing to a full conversion at thistime is prudent or not.

Thank you!
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