Dielectronic Recombination of W¹⁸⁺: Theory vs Storage Ring Measurements

Nigel Badnell

Department of Physics University of Strathclyde Glasgow, UK

Motivation

- Dielectronic recombination (DR) establishes the ionization balance in non-LTE plasmas and contributes to line emission e.g. DR satellites.
- For ITER and ITER-like devices we need to consider W and its brethren. The highest charge-state likely to be seen in ITER is nominally 60+.
- ullet Tungsten $\sim 20+$ is seen at the null point of the separatrix at JET.
- Previously, (ADAS 2012) reported-on DR of $W^{20+}(4d^{10}4f^8 \ ^7F_6)$: experiment (Schippers et al. PRA83, 012711, 2011) and theory (Badnell et al. PRA85, 052716, 2012).

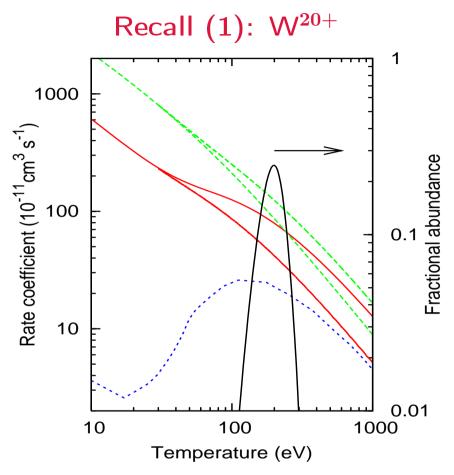


Fig 1. W^{20+} total Maxwellian DR rate coefficients: experiment Schippers et al. (2011) to 140 eV and with theory top-up for resonances above 140 eV (long-dashed green curves); theory Badnell et al. (2012) IC all resonances and to 140 eV only (solid red curves), and ADAS (Foster, Ph.D. Thesis 2008) (short-dashed blue curve). A possible fractional abundance of W^{20+} in a magnetic fusion plasma is shown also (solid black curve).

Recall (2): W²⁰⁺

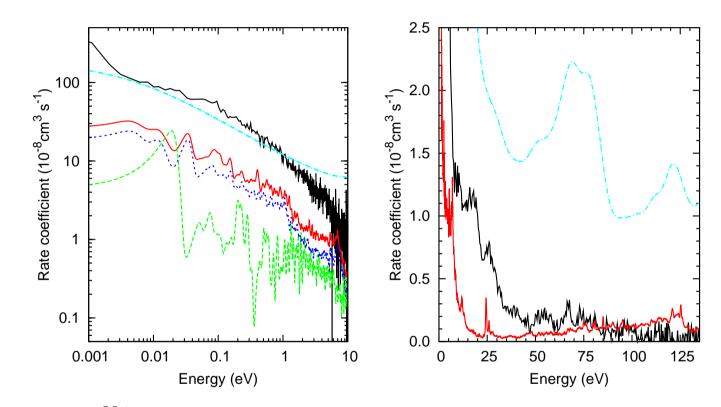


Fig 2. W²⁰⁺ merged-beams DR rate coefficients: experiment Schippers et al. (2011) (solid black curve); theory Badnell et al. (2012) partitioned total (dot-dashed cyan curve), IC total (solid red curve), LS total (long-dashed green curve), and IC $4d \rightarrow 4f$ only (short-dashed blue curve).

DR of W¹⁸⁺ $(4d^{10}4f^{10}\ ^5I_8)$

We use AUTOSTRUCTURE (Badnell 2011) to carry-out configuration average, LS-and intermediate coupling calculations — including partitioning.

We consider $\Delta n=0$ and $\Delta n=1$ promotions of 4d and 4f electrons.

The complexity of the open f-shell restricts us to one-electron promotions plus dielectronic capture into autoionizing states of W^{17+} .

There are many more autoionizing states present which result from multiple-electron promotions (plus capture) but they are 'forbidden' to the ground state under a single 2-body operator.

The same open f-shell complexity mixes/redistributes the dielectronic capture (inverse autoionization A) over many more autoionizing states, effectively making them accessible from the ground state.

Such 'forbidden' capture states can typically radiatively stabilize at a rate R comparable with that for the 'allowed' capture.

A Simple Model

What does this mean for DR?

Recall,

$$DR \propto \frac{AR}{A+R} \tag{1}$$

and so the weaker process controls the rate:

If
$$A \ll R$$

$$DR \propto \frac{A}{A/R+1} \approx A$$
. (2)

If
$$R \ll A$$

$$DR \propto \frac{R}{1 + R/A} \approx R.$$
 (3)

So, if the autoionization rate A, corresponding to the allowed dielectronic capture, satisfies

$$A \ll R$$
, (4)

initially, then the total DR is merely redistributed by any (unitary) mixing transformation, and

$$DR \propto A$$
 (5)

still, both with-and-without mixing.

However, if initially

$$A \gg R$$
, (6)

SO

$$DR \propto R$$
, (7)

then following complete redistributive mixing of A, so that $A \ll R$ again, we have the total

$$DR \propto A$$
 (8)

and enhanced by a factor

$$A/R$$
. (9)

compared to the unmixed result.

Redistribution, Partitioning & Damping

We use a Breit-Wigner distribution to partition our autoionization rates, as suggested by statistical theory (Flambaum et al. 1994):

$$A \leftarrow L(E)A \tag{10}$$

and

$$L(E) = \frac{\Gamma/(2\pi)}{E^2 + \Gamma^2/4},\tag{11}$$

where E is the 'de-tuning' energy and Γ is the spreading width (~ 10 eV for the open f-shell). We use a uniform logarithmic set of 'bin' energies for E.

The above model is valid close to threshold only. As we move higher in energy, more-and-more alternative autoionization into excited-states pathways open-up and suppress the DR again $(A + R \not\approx R)$.

Thus, the total autoionization width needs to be recomputed at each bin energy (for each dielectronic capture).

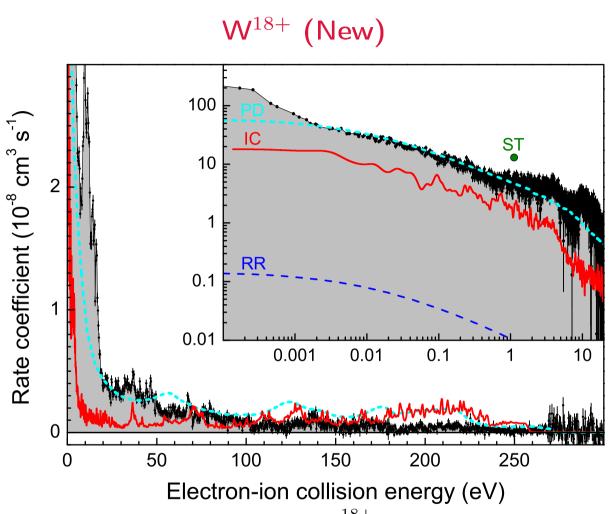


Fig 3. Merged-beams recombination rate coefficients for W^{18+} (Spruck et al. Phys.Rev.A At Press, 2014). Symbols with error bars: measured; solid curve (IC): present intermediate-coupling results; short-dashed curve (PD): present partitioned and damped results; circle (ST): from the statistical theory by Dzuba et al. (2012).

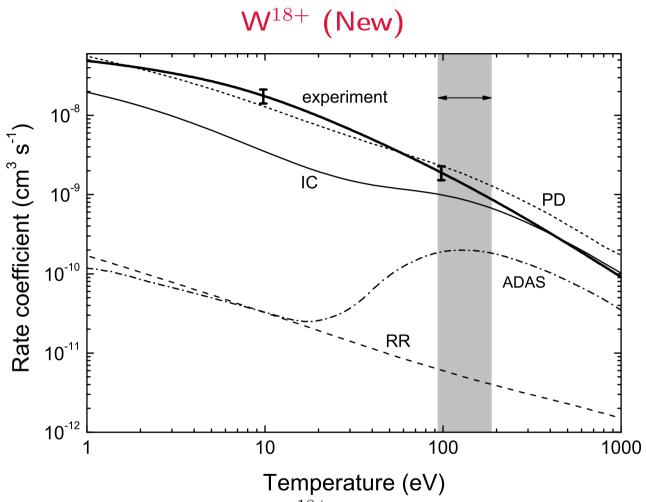


Fig 4. Plasma recombination rate coefficients for W^{18+} (Spruck et al. Phys.Rev.A At Press, 2014). Thick solid curve: experimentally derived rate coefficient; thin solid curve: IC theory; short-dashed curve (PD) partitioned and damped calculation; Dot-dashed curve: ADAS plasma recombination rate coefficient (Foster 2008).

W²⁰⁺ (Revisited)

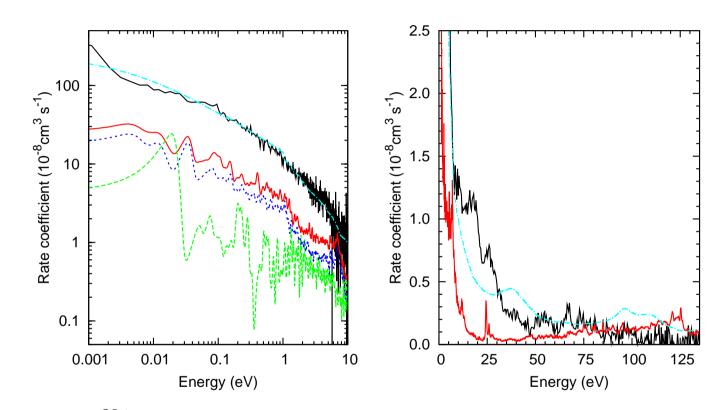


Fig 5. W $^{20+}$ merged-beams DR rate coefficients: experiment Schippers et al. (2011) (solid black curve); theory Badnell et al. (2012, & unpublished) partitioned and damped total (dot-dashed cyan curve), IC total (solid red curve), LS total (long-dashed green curve), and IC $4d \rightarrow 4f$ only (short-dashed blue curve).

- ADAS 2014 -

Follow-up

ADAS 2012 Workshop:

- CR modelling to assess density effects and revise ionization balance for W with open f-shell; × DR of adjacent ions expected to be similar. ✓
- Experiments on adjacent ions being analyzed (Schippers, private communication). $\sqrt{(19+\text{ almost finished.})}$
- Can the validity of the model calculation be extended to higher energy? $\sqrt{\ }$

Follow-on

ADAS 2014 Workshop:

- We have a good handle on total DR. But CR modelling requires final-state resolved partials. We have the answer, viz. the hybrid adf09 specification (discussed at ADAS 2012). The question is, where do we put the redistributed DR?
- EPSRC funded (EP/L021803/1) 'Atomic Process for Magnetic Fusion Plasmas: DR of the Tungsten Isonuclear Sequence' starting shortly (Simon Preval) at Strathclyde, and Martin at JET.

Podziękowania!