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Motivation

• More detailed picture of the role of atomic physics in 

detachment requires precise measurements of plasma 

parameters

• Towards integration of grating and filtered imaging 

spectroscopy  detachment physics is 2D!

• Codes benchmarking  detachment modelling sensitive to 

small changes in atomic/molecular physics assumptions
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Continuum emission Te dependence

Driving term for 
Σnq≥2 / Σnq≥3 

ratio

Σnq≥1

Σnq≥2
Σnq≥3 Σnq≥4

Σ
n

q
≥2

 /
 Σ

n
q
≥3

 

Te=1   eV
Te=10 eV

Model: 
adaslib/continuo

 Continuum diagnostic technique demonstrated on Alcator
C-Mod [Lumma, Terry, Lipschultz Phys. Plasmas 4 (7) 1997]
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Continuum emission: Line integration effects 3

• Consider 2-shell emission with Te,1=2.0 eV and Te,2=0.5 eV (constant Ne) 
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Continuum emission: Line integration effects 3

• Consider 2-shell emission with Te,1=2.0 eV and Te,2=0.5 eV (constant Ne) 

• Line-of-sight integrated Te total emission:

• Te = 0.59 eV

• Te = 0.78 eV 

• Te = 1.04 eV

fb( < 365 nm) weighted towards lowest Te

fb( > 365 nm) weighted towards higher Te



Relevant JET-ILW diagnostics

• VIS Spec LOS: long path length 
 subtract core ff + fb using Thomson 

scattering core Te, Ne profiles

• When W I 400.9 nm line not present
 W I filtered camera measures 

continuum
 Confirms “single shell” emissionHRTS

Li-beam
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Langmuir probes

Interferometry

<ne,edge> 

Imaging 

spectroscopy

2D reconstruction



Composite continuum spectrum and fits 5

• Te fb edge ratio  vs. Te fb < 365 nm

• Constrain fit using line-averaged Ne from Stark broadening

•  > 400 nm need higher signal/noise measurements for 

more precise Te fb > 365 nm



Inferring Te from H Balmer lines

• Knowns (if Ne≈Ni), Unknowns

• Which lines to choose?

• High-n: possible continuum merging

• Low-n, other possible populating 

mechanisms?

• e.g., MAR reaction chain 

populates n=3 [Post et al., Contr. 

Plasma Phys. 34 1994]

• Use mid-n lines for fitting
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Atomic data set:
ADAS ADF15 

pec12#h_pju#h0.dat

KT3E survey spec. 42

52

62

72

82



Synthetic fits: Absolute line intensities

Ne
input

N0
input
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• If ΔL estimate available 

(assume 50% uncertainty):

 2 parameter fit for N0, Te

• Good Te recovery

• Good N0 recovery

 Bracketed by Te range in 

which both excitation and 

recombination are relevant



Parameter estimates from combined analysis

Recombination 

Continuum
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mid-n Balmer

series line 

intensities

Te (independent)

Stark 

broadening

ΔL (D n=72)

ΔL

Srec, Irec, Iexc, PRAD

Ne

(independent)

2 parameter fit for 

Te, N0

2D emission 

profile 

reconstructions

Grating Spectroscopy

Filtered cameras
?

?



9Parameter estimates (Te fb edge ratio): L-mode density ramp

Srec,tot

@OSP

LPs

⃝  LP

Stark 
broadening

Balmer Te fit

out,tot

• Low Srec,tot

 not a significant                                     

ion sink except                                    

at highest                                  

<Ne,edge>

• Te, Ne: LP vs spectroscopy 

 poor agreement

• Good agreement in Te from recomb. 

and Balmer fit (ΔL link) 

 consistency between the two 

emission processes

OSP



10Parameter estimates (Te fb < 365 nm): L-mode density ramp

Srec,tot

@OSP

LPs

⃝  LP

out,tot

• Srec,tot  4  Srec,tot

 significant ion sink!

• Balmer Te fit “follows” continuum Te

 Underscores importance of line integration 

profile effects

Stark 
broadening

Balmer Te fit

OSP



11ΔL estimates: Te fb edge ratio vs. Te fb < 365 nm 

• Qualitatively consistent with 2D emission profiles 

 which ΔL estimate is more representative of total emission? 

• More information on ne, Te profiles along spectral LOS needed! 

 Inverse problem

DεDε

ff-fb

400.9nm

ΔL estimate from 

recombination 

continuum

ΔL estimate from 

D (72) line 

(recombination 

dominated)

ff-fb

400.9nm



Neutral density and Rec/Exc
(Te fb edge ratio)

• D, D Excitation contribution 

significant (i.e., can’t recover 

measured line intensities with 

recombination alone)

• Balmer line fit predicts                

1022 < N0 <1024 m-3 for 

1.0 < Te < 1.5 eV

• Using Te, Ne, N0  extrapolate to 

Lyman series line intensities and 

calculate outer divertor radiated 

power
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(Te fb edge ratio)

• Good agreement between 

predicted/measured Balmer series 

radiated power (i.e. good match to D )

• Lyman series predicted power x101-

102 too high!

Neutral density and Rec/Exc
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(Te fb < 365 nm)

• 0.4 < Te < 0.75 eV too low for N0

estimate  predicted power using 

recombination component only

• N0~1028 required for agreement with 

measured D power !?!

Neutral density and Rec/Exc
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Total
Core

Outer div.

ADF15 PEC coeffficients with estimated opacity correction

• N0 and PRAD-Ly 3-4 decrease, but not enough to reconcile 

bolometry measurements

• Ly- , Ba- radial profiles needed for better escape factor estimates
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• Recent H L-mode experiments suggest opacity could be significant:

 Estimated escape factors: gLy-  0.1  gLy-  0.55
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Summary

• Integrated analysis combines two different (but intimately tied) emission 

processes  recombination continuum and Balmer lines

• Interpretation of continuum emission  low and high Te estimates

• Key question: which Te is more representative of total emission?

 Implications on detachment physics: volume recombination, 

neutral density, populations and radiated power!

Line-integration effects: fundamental barrier to line-averaged 

analysis?

Next Steps:

• More precise characterisation of opacity  provide insight on self-

consistency of spectroscopic analysis

• Apply to modelled plasmas with a priori knowledge of parameter 

profiles along line-of-sight
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