

A generalized model of atomic processes in plasmas : FLYCHK

H.-K. Chung Atomic and Molecular Data Unit, Nuclear Data Section, IAEA

ADAS Workshop, Gunsan, Korea 29-30 September 2016

Outline

Motivation

• FLYCHK code

• Applications of FLYCHK results

MOTIVATION

Plasmas occur over a vast range 60 Years of conditions in Universe

Temperature 10⁻⁶K – 100 keV

Density 10⁵ – 10²⁴ cm⁻³

Advances in plasma generation access new regimes of matter

High Power Optical Lasers (NIF, LMJ, Omega etc)

Hotter and denser matter

XFEL: X-ray Free Electron Lasers (LCLS, SACLA, PAL-XFEL etc)

Warm dense matter

USP: Ultra Short Pulse Laser (RAL, LULI, Gekko, Titan, Texas, etc)

Transient states of matter

Pulse Power: X-Pinches, Z-Pinches... (Sandia, Cornell, UNR)

Astronomical X-ray applications

Laboratory plasmas can create extreme states of matter

General Description of Atomic Processes in plasmas are needed

Mean ionization states <Z>, Charge state distributions, Spectral intensity, Emissivity, Opacity, Equation of state, Electrical conductivity require population distributions of ions in the plasma.

BOUND-BOUND TRANSITIONS $A_1 \rightarrow A_2 + hv_2$ Spontaneous emission $A_1 + hv_1 \leftrightarrow A_2 + hv_1 + hv_2$ Photo-absorption or emission $A_1 + e_1 \leftrightarrow A_2 + e_2$ Collisional excitation or deexcitation BOUND-FREE TRANSITIONS

 $B_1 + e \rightarrow A_2 + hv_3$ Radiative recombination

 $B_1 + e \Leftrightarrow A_2 + hv_3$ Photoionization / stimulated recombination

 $B_1 + e_1 \iff A_2 + e_2$ Collisional ionization / recombination

 $B_1 + e_1 \Leftrightarrow A_3 \Leftrightarrow A_2 + hv_3$ Dielectronic recombination

(autoionization + electron capture)

Generalized Population Kinetics Codes Applied to "Any Plasmas" in zeroth order approximation

FLYCHK CODE

Population Kinetics Models for Charge State Distributions

<u>Coronal plasmas (low N_e) \Rightarrow Rate formalism</u>

Charge state distributions are determined by rates of collisional ionization (CI) and excitation autoionization (EA) & radiative recombination (RR) and dielectronic recombination (DR), Rates originating from the ground states

<u>LTE plasmas (high N_e) \Rightarrow Statistical distributions</u>

Collisional processes are dominant and population distribution is governed statistically by *Boltzmann relations and Saha equation*.

<u>Collisional-radiative plasmas (intermediate N_{e}) \Rightarrow Rate equation model</u>

At a given electron temperature and density, population distribution is determined by solving *Rate equations considering collisional and radiative processes*.

Collisional-Radiative results should converge to <u>Coronal Limit</u> or <u>LTE Limit</u> at low and high Ne limits, respectively.

Collisional-Radiative Model

(Non-Local Thermodynamic Equilibrium Model)

ion Z+1

- <u>Population distribution is obtained by rate equations</u> considering collisional and radiative processes, along with plasma effects
- <u>Excited states</u> are substantially populated and <u>increase the total ionization</u> by step-wise ionization processes
- The 3-body recombination to <u>high-lying excited states</u> is proportional to n⁴ and N_e² and excited states can significantly <u>enhance the total recombination</u>.
- <u>*Plasma effects*</u> such as non-local radiation transport, fast particle collisions and density effects should be included in the model.
- <u>Self-absorption (radiation pumping)</u> should be included for treating radiative processes involving optically thick lines.

Collisional-Radiative Model

Average charge states as a function of electron density

Stepwise excitation via excited states \rightarrow <Z> increase

3-body recombination via Rydberg states \rightarrow <Z> decrease

Pressure ionization of excited states and ionization potential depression \rightarrow <Z> increase

FLYCHK code: http://nlte.nist.gov/FLY

- A time-dependent 0-d collisional-radiative (Non-LTE) model to provide charge state distributions and spectral intensities
- Available online at NIST
- Applications
 - Long-pulse laser produced plasmas
 - Short-pulse laser produced plasmas
 - XFEL laser produced plasmas
 - Electron beam produced plasmas
 - Time-dependent plasmas
 - Tokamak plasmas

Title of this run:					Run FLYCHK	Clear
Diagnostics output: [
Nuclear Charge 🤅	۰					
Initial Condition	Non-L	TE Steady S	or up tate ▼ Choo	oload file: ose File No file	chosen	
System Evolution	Non-L	TE Steady S	tate ▼			
Electron Tempera [eV] (max 10 val	ature lues) 🚱	Initial:	Fina	l:	Increment:	
Density Type Ele (max 10 values)	ctron ▼ ?	Initial:	Fina	l:	Increment:	
					7	
Mixture 🧭	Z _{mix} :		Percent:		Znum:	
Opacity 🤣	(cm):				Or history file	:
Ion T _i [eV] 🤪	T _i /T _e :		Fixed T _i :		Or history file	
2 nd T _e [eV] 🤪	2nd T _e :		Fraction:		Or history file	:
Radiation T _r [eV] 🚱	T _{rad} :		Dilution :		Or history file	: •
Radiation Field	Choose Fi	ile No file chos	en			
EEDF 🤪	Choose Fi	ile No file chos	en			
					Run FLYCHK	Clear)

- More than 750 registered users
- High Energy Density Physics, v.1, p.3 (2005) cited by ~ 300 times since 2005

FLYCHK Model : simple, but complete

- Screened hydrogenic energy levels with relativistic corrections
- Relativistic Hartree-Slater oscillator strengths and photoionization crosssections (J. Scofield, M. Chen)
- Fitted collisional cross-section to PWB approximation
- Semi-empirical cross-sections for collisional ionization
- Detailed counting of autoionization and electron capture processes
- Continuum lowering (Stewart-Pyatt, Ecker-Kroll)

Dielectronic Recombination & Excitation Autoionization

Excitation autoionization (EA) /Dielectronic recombinationa (DR) processes are modeled with doubly-excited and inner-shell (IS) excited states

NLTE Kinetics Model Issues: DR & EA

NLTE6 code comparison workshops (2011) Mean ion charges for Ar case, $n_e = 10^{12}$ cm⁻³

NLTE Workshops, Chung et al. HEDP 9, 645 (2013)

Total line emissivity and energy-dependent spectral intensity in the STA formalism **IAEA**

<u>Total line emissivity:</u> plots show approximate line emission spectra and provides information on energy range of dominant emission

 $S = n_u A_{ul} E_{ul} / N_e$ [eVcm³/s/atom]

<u>Spectral emissivity</u> is computed in the STA (Super Transition Array) formalism using configuration-average atomic data generated by the DHS (Dirac-Hartree-Slater) code (M.Chen)

$$\eta(\nu) = n_A A_{AB} E_{AB} \phi(\nu) = \frac{n_A \sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e) A_{ij} E_{ij} \phi(\nu)}{\sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e)} \quad \text{[ergs/s/Hz/cm3/ster]}$$

$$A_{AB} = \frac{\sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e) A_{ij}}{\sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e) A_{ij} E_{ij}} \qquad \mu_{AB}^2 = \left[\frac{\sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e) A_{ij} E_{ij}}{\sum_{i \in A: j \in B} g_i \exp(-E_i / kT_e) A_{ij}}\right]^2 - E_{AB}^2$$

APPLICATIONS

FLYCHK radiative loss rates give quick estimates

Calculated Kr radiative cooling rates per N_e [eV/s/ atom/cm⁻³] 4 x 10⁻⁷ Max~30%

of radiative transitions

lon	HULLAC+DHS	FLYCHK
1	3049	45
2	27095	107
3	30078	89
4	404328	140
5	3058002	140
6	5882192	140
7	7808014	140
8	6202123	140
9	5544814	140
10	1050919	131
11	841094	122
sum	30,851,708	1334
Time	~2 days	~mins

Gold ionization balance in high temperature hohlraum experiments

High-T hohlraum reach temperatures: ~ 10 keV

L-shell gold spectra (K. Widmann)

• Spectrum from $n_e \sim 4x10^{21}$ cm⁻³, $T_e \sim 7-10$ keV measured for first time

FLYCHK Spectra

Steady-State Spectra and <Z> over a wide range of conditions

ELYCHK Gold ionization balance

65 HTH 60 55 50 FLYCHK at Ne= 10^{21} cm⁻³ 45 FLYCHK at Ne= 10^{22} cm⁻³ DATA for large-scale HO at 2.5 keV $12x10^{3}$ 2 10 8 6 T_[eV]

FLYCHK gives an estimate of Gold Charge state distributions and L-shell spectra

FLYCHK gives an estimate of <Z> for a wide range of plasma conditions, which is suitable for experimental design and analysis

HEDP 4, 78 (2008)

FLYCHK at NIST is developed and managed by H.-K. Chung, M. Chen and R. W. Lee at LLNL and Yu. Ralchenko at NIST. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7406-Eng-48

FLYCHK at NIST is developed and managed by <u>H.-K. Chung</u>, M. Chen and <u>R. W. Lee</u> at LLNL and <u>Yu. Ralchenko</u> at NIST. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7406-Eng-48 (H.-K.C., M.C., and R.W.L.) and the Office of Fusion Energy Sciences of the U.S. Department of Energy (Yu.R.).

FLYCHK at NIST is developed and managed by <u>H.-K. Chung</u>, M. Chen and <u>R. W. Lee</u> at LLNL and <u>Yu. Ralchenko</u> at NIST. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7406-Eng-48 (H.-K.C., M.C., and R.W.L.) and the Office of Fusion Energy Sciences of the U.S. Department of Energy (Yu.R.).

<u>lo</u>

FLYC	HI		in Laboratory omic Physics Division	at a		V Division			
Jser: hchung								Plot) Clear)
Runfile Input Parameter Input									
-Grid -History	F	Run time: Th	u Jan 19 0	B:05:35					
-Current -Previous	F	tun description: G	old L-shell Spe	ectra					
<u>q out</u>	F	Plot ionization	distribution	at given	grid cases				
	:	Select density 🦲	Check all						
					1.000e+	21 🗹		1.000)e+22 🔲
		Select temperatu	re Uncheck all						
		4	000 🔽	60	000 🔽	8000 🔽	10000 🗵		12000 🗹
		Plot options							
		Log X 📃	X _{min}		X _{max}		Sho	w data values on the p	lot 📃
		Log Y 🗖	Ymin		Ymax		Rem	ove grid lines on the p	lot 🔳
								Plot) Clear

ELYCHK at NIST is developed and managed by <u>H.-K. Chung</u>, M. Chen and <u>R. W. Lee</u> at LLNL and <u>Yu. Ralchenko</u> at NIST. This work was performed under he auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7406-Eng-48 (H.-K.C., M.C., and R.W.L.) and the Office of Fusion Energy Sciences of the U.S. Department of Energy (Yu.R.).

User: hchung Element: Au **Runfile Input** Comments: Gold L-shell Spectra Parameter Input -Grid The Java applet (PtPlot v.5.5) requires Java installed. -History Results -Current Run time: Thu Jan 19 08:05:35 -Previous log out 0.28 0.26 0.24 0.22 0.20 0.18 0.18 0.16 S 0.14 0.12 0.08 0.06 0.04 0.02 0.00 Ω 40 70 80 10 20 30 50 60 Ion Charge Static plots: PDF | PS

List of Selected Cases						
Case #	Temperature	Data				
1	4000.0	1.e+21	<u>file</u>			
3	6000.0	1.e+21	<u>file</u>			
5	8000.0	1.e+21	file			
7	10000.0	1.e+21	<u>file</u>			
9	12000.0	1.e+21	<u>file</u>			

1 🖕

3 🗙 5 🗖

7 .

9

									23	
æ	Ð	NUTE htt	tp://nl	te. nis.	,o -	2	ς×	ŵ	☆	ŵ
NUT NIS	t.gov				×					
File	Edit	View	Fav	orites	Tools	ŀ	lelp			
» 💈	•	<u></u>	_		👻 Page	e 🔻	Safet	y 🕶		»
45		6.128	-05							*
46		3.38E	2-04							
47		1.63E	-03							
48		6.84E	-03							
49		2.675	-02							
50		7.13E	-02							
51		8.13E	-02							
52		1.03E	2-01							
53		1.198	-01							
54		1.265	-01							
55		1.235	01							
50		0 700	01							
59		6 218	-02							
50		2 005	-02							
60		2 328	-02							
61		1.238	-02							Ξ
62		5.328	-03							
63		2.085	2-03							
64		7.218	-04							
65		2.198	-04							
66		4.86E	-05							

Plot

Clear

User: hchung

Runfile Input Parameter Input -Grid -History Results -Current -Previous log out

					Plot) Clear
Run time: Thu	Jan 19 08:05:3	5			
Run description: Gold	L-shell Spectra				
Plot spectrum for	r a specific E/λ r	ange 🤣			
Select parameter,	x-axis units and rar	nge			
Parame	eter: Intensi	ty 🔍	Emissivity O	Opacity O	Optical Depth 〇
U	nits:	energy	[eV] 🖲		
Ra	nge:	low limit 9	9600	upper limit	10600
	Se	elect either a	all cases (left) or a subse	et of cases (right)	
Plot spectra	case		temperature		density
for all cases:		1 🔽	4000.0		1.e+21
		2	4000.0		1.e+22
		3 🔽	6000.0		1.e+21
		4 🗖	6000.0		1.e+22
		5 🔽	8000.0		1.e+21
		6 🗖	8000.0		1.e+22
		7 🔽	10000.0		1.e+21
		8	10000.0		1.e+22
		9 🔽	12000.0		1.e+21
		10 🗌	12000.0		1.e+22
Plot options					
Log X	x _{min} 9600		x _{max} 10600	Show	data values on the plot
Log Y	Ymin		Ymax	Remo	ve grid lines on the plot

List of Selected Cases						
Case #	Temp	Dens	Spectrum	Lines		
1	4000.0	1.e+21	file	lines		
3	6000.0	1.e+21	file	lines		
5	8000.0	1.e+21	file	lines		
7	10000.0	1.e+21	file	lines		
9	12000.0	1.e+21	file	lines		
Opacities etc. Spectra etc.						
	zip					

User: hchung

Runfile Input
Parameter Input
-Grid
-History
Results
-Current
-Previous
og out

			Plot	Clear
Run time: Thu Jan 19 08:05:35				
Run description: Gold L-shell Spectra				
Plot approximate total emissivities for bound-bound transitions 🤪				
Select x-axis units and range for total er	nissivities			
Units:		energy [eV] 💿		
Sele	ct either all cases (le	eft) or a subset of cases (right)		
Plot spectra	case	temperature	density	
for all cases:	1 🗹	4000.0	1.e+21	
	2 🗖	4000.0	1.e+22	
	3 🗸	6000.0	1.e+21	
	4 🗖	6000.0	1.e+22	
	5 🔽	8000.0	1.e+21	
	6 🗖	8000.0	1.e+22	
	7 🔽	10000.0	1.e+21	
	8 🗖	10000.0	1.e+22	
	э 🔽	12000.0	1.e+21	
	10 🗖	12000.0	1.e+22	
Plot options				
Log X 🗹 Xmin	X _{max}		Show data values on the plot	
	Ymax		Remove grid lines on the plot	

Runfile Input Parameter Input -Grid -History Results -Current -Previous log out

User: hchung

List of Selected Cases					
Case #	Temp	Spectrum			
1	4000.0	1.e+21	file		
3	6000.0	1.e+21	file		
5	8000.0	1.e+21	file		
7	10000.0	1.e+21	file		
9	12000.0	1.e+21	file		
<u>Opaciti</u>	Sp	ectra etc.			
All file	ive:	zip			
All files in an archive:					

Short Pulse Laser Plasma: Shift and Broadening of K-shell line emission

Phys. Plasmas 14, 023102 (2007)

Z-pinch Photoionized Plasmas

XFEL driven ionization processes in solid target (SCFLY)

P - K-shell photoionization A - KLL Auger recombination C - L-shell collisional ionization R - K-L resonant excitation

- 1 micron thick AI foil ($9.1\pm0.8 \ \mu m^2$)
- 80 fs X-ray pulse at 1560-1830 eV
- 10¹² photons w/ 0.4% bandwidth
- 1.1 ×10¹⁷ W/cm²
- With experimentally determined XFEL intensity distribution, the agreement of calculation and measurement is better
- S. Vinko, Nature 482, 59 (2012)
- Ciricosta, PRL, 109, 065002 (2012)
- B. I. Cho, PRL 109, 245003 (2012)
- D. S. Rackstraw, PRL 114, 015003 (2015)
- P. Sperling, PRL 115, 115001 (2015)

Applications to Plasma Research

Short-pulse laser-produced plasmas

- Arbitrary electron energy distribution function
- Time-dependent ionization processes
- K-α shifts and broadening: diagnostics

Long-pulse laser-produced plasmas

- Average charge states
- Spectra from a uniform plasma
- Gas bag, Hohlraum (H0), Underdense foam
- <u>Z-pinch plasmas</u>: photoionizing plasmas
- Proton-heated plasmas: warm dense matter
- EBIT: electron beam-produced plasmas
- <u>EUVL</u>: Sn plasma ionization distributions
- <u>TOKAMAK</u>: High-Z impurities

Advantages and Limitations http://nlte.nist.gov/FLY

Advantages: simplicity and versatility→ applicability

- <Z> for fixed any densities: electron, ion or mass
- Mixture-supplied electrons (eg: Argon-doped hydrogen plasmas)
- External ionizing sources : a radiation field or an electron beam.
- Multiple electron temperatures or arbitrary electron energy distributions
- Optical depth effects

Caveats: simple atomic structures and uniform plasma approximation

- Not valid for neutral and near neutral conditions
- Less accurate when $\Delta n = 0$ transitions become prevalent
- Less accurate when metastable states populations are important
- Less accurate spectral intensities for non-K-shell lines
- Less accurate for coronal and for LTE plasmas
- When spatial gradients and the radiation transport affect population significantly

Modern Methods in CR Modeling of 60 Years Plasmas, Springer 2016 (Yu. Ralchenko)

- Balancing Detail and Completeness in Collisional-Radiative Models
- Self-consistent Large-Scale Collisional-Radiative Modeling
- Generalized Collisional Radiative Model Using Screened Hydrogenic Levels
- Collisional-Radiative Modeling for Radiation Hydrodynamics Codes
- Average Atom Approximation in Non-LTE Level Kinetics
- Spectral Modeling in Astrophysics—The Physics of Nonequilibrium Clouds
- Validation and Verification of Collisional-Radiative Models
- Collisional-Radiative Modeling and Interaction of Monochromatic X-Rays with Matter

Yuri Ralchenko Editor

Radiative

Modern Methods

in Collisional-

Modeling of

Thank you!

Joint ICTP-IAEA School on Atomic Processes in Plasmas

27 February - 3 March 2017

(ICTP, Miramare - Trieste, Italy)

The Abdus Salam International Centre for Theoretical Physics (ICTP) and the International Atomic Energy Agency (IAEA) will jointly organize this School to be held at ICTP in Miramare, Trieste, Italy, from 27 February to 3 March 2017. The event will provide advanced training in theoretical and computational methods for atomic processes in plasmas. The schedule will feature lectures by international experts, exposure to modern scientific computer codes, posters and discussion sessions, with good time available for personal interaction. We expect participants from around the world.

PURPOSE

The conditions in laboratory and industrial plasmas, laser-produced plasmas, astrophysical plasmas, and warm and hot dense matter are determined by numerous atomic processes including electron-ion and heavy particle collisions, photon-induced processes, and radiation emission and transport. Even in fully ionized plasmas, which are typical for fusion energy research, atomic processes are very important as they underlie all impurity-based spectroscopic diagnostics.

The school will assist qualified Ph.D. students and early career researchers to develop their quantitative understanding of collisional and radiative atomic processes in plasmas with applications to fusion energy research, astrophysical science, laser-produced plasmas and other plasma environments. Participants will become acquainted with their international peers and will have a unique opportunity to establish links for their mutual support. Knowledge transfer will be facilitated between individuals from developed and developing countries.

TOPICS

- Principles of spectroscopic diagnostics of plasma;
- Collisional-radiative modelling and calculation of plasma spectra;
- Computational methods for atomic structure and collisions;
- Simulations of non-Maxwellian and highly transient plasmas;
- Radiation transport effects on plasma properties and plasma diagnostics;
- Methods for analysis of spectral line shapes and profiles;
- Online codes for calculation of ionization distributions and spectra.

The School will consist of lectures, computer labs and participant presentations. For the most up-to-date information please see the meeting web page at IAEA: https://www.amdia.isea.org/Workshops/CTP2017/

GRANTS

A limited number of grants are available to support the travel and living expenses of selected participants, with priority given to participants working in a developing country and who are at the serily stages of their career.

There is no registration fee for attending the school.

HOW TO APPLY FOR PARTICIPATION

The Online Application can be accessed at: http://indico.ictp.it/event/7950/

Comprehensive instructions will guide you step by step on how to fill out and submit the application form. After your profile information is complete and before submitting the application you will be asked to attach a one-page abstract of a scientific contribution to the poster session of the school. Kindly send all file attachments in Word or PDF format

> <u>Secretariat:</u> Ms. Rosa del Rio (smr 3105) Telephone: +39-040-2240386 - Telefax: +39-040-22407896 - E-mail: smr3105@ictp.it ICTP Home Page: http://www.ictp.it

()

IAEA

In cooperation with IAEA International Atomic Energy Agency

60 Years

DIRECTORS

H.-K. Chung and B. J. Braams (IAEA, Austria)

> Yu. Ralchenko (NIST, USA)

LOCAL ORGANIZER

J. Niemela (ICTP, Trieste)

SCHOOL LECTURERS

C. Ballance (Queen's Univ., Belfast, UK)

> H.-K. Chung (IAEA, Austria)

S. Fritzsche (Helmholtz-Institut, Jena, Germany)

> H.-J. Kunze (Ruhr Univ., Germany)

> > Yu. Ralchenko (NIST, USA)

> > > H. A. Scott (LLNL, USA)

J. Seely (Artep Inc, USA)

E. Stambulchik (Weizmann Inst. Sci., Israel)

DEADLINE to request participation

20 October 2016