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Overview

• R-matrix method

• Parallel codes

• R-matrix with pseudo-states (RMPS)

• Intermediate coupling frame transformation (ICFT) R-matrix

• Dirac R-matrix

• Future thoughts
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Motivation

Q. Why atomic collisions?

A. Spectroscopic diagnostic modelling of non-LTE astrophysical and laboratory plasmas.

Simplest model: excited states of an atom/ion are populated by collisional excitation and

de-populated by radiative transitions.

So, need excitation rate coefficients — Maxwellian average of excitation cross sections.
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A typical cross section?
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(Collision strength Ω = ωk2σ/πa20.)
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No!
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(129CC Dirac–Coulomb R-matrix collision strength for the 3d10 1S0 − 4d1S0 transition in Xe26+.)
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The difference!
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(Effective (Maxwell-averaged) collision strength Υ = (kT )1/2ωq/(2αca20
√
π).)
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Basic Scattering Theory (in one page)

Write the (anti-symmetric) total wavefunction for the atom-colliding particle system as

Ψ = AΣ

Z

ν

ψνφ , (1)

where the ψν form a complete set of atomic eigenstates (discrete plus continuous).Then

solve for φ from

HΨ = EΨ , (2)

where H and E are the total Hamiltonian and Energy of the system, respectively. The

difference between the large distance asymptotic wavefunction for the colliding particle

(φ) and that of a plane (or Coulomb) wave leads to the probability of scattering (by a

non-Coulomb potential) that has taken place — the S- or scattering matrix, of reactions

between initial and final atomic states. A more useful quantity, simply related to the

S-matrix, is the cross section, σ.
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The Solution

Use of (1) and (2) leads to an infinite set of coupled integro-differential equations (integro

because the exchange operator is a non-local). By discretizing the continuum we can

form a quadrature for (1) and reduce (2) to a finite-set of close-coupling (CC) equations.

Historically, only a few low-lying states of direct interest were included in the CC equations.

In (1) we assumed that we had all atomic eigenstates to any required level of accuracy.

In practice, determining a sufficiently accurate atomic structure, while keeping the CC

expansion manageable, is a significant issue for any collision calculation.

The wavefunction for the colliding particle (φ) is also expanded as an infinite sum of partial

waves (angular momentum states). Typically, ≤ 10 angular momentum states couple to

a given target state so as to give the same, conserved, total angular momentum for the

combined system.

So, given a set of coupled integro-differential equations, how do we best go about solving

them, given the complex resonance structure that we must resolve?
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The R-matrix Method

The approach of the R-matrix method (Burke & Robb, 1975) to scattering builds upon the

idea of dividing-up configuration space into two regions, an inner one where the scattering

potential is non-trivial and the scattering wavefunction complicated, and an outer region

where the potential is ‘simple’, for example, it vanishes or is Coulombic, and the radial

function is represented by its asymptotic form, viz.

fl(r) = fal (r), (3)

for r ≥ r0, the R-matrix boundary.

For example, a partial plane wave equation

 

d2

dr2
− l(l+ 1)

r2
+ k

2

!

f
a
l (r) = 0 (4)
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with general solution

fal (r) = Al [sl(kr) +Klcl(kr)] (5)

and Kl = tan δl, where δl is the phase shift and Al is a normalization constant.

We denote the two independent real solutions by sl(kr) and cl(kr) (the so-called s

and c functions). These are related to the spherical Bessel and Neumann functions jl(x)

and nl(x) via

sl(x) = xjl(x) (6)

and

cl(x) = −xnl(x). (7)

Asymptotically,

sl(x) ∼
x→∞

sin

„

x− lπ

2

«

(8)

cl(x) ∼
x→∞

cos

„

x− lπ

2

«

. (9)

In the inner-region (r ≤ r0) we denote the regular solution satisfying fl(r = 0) = 0
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by f bl (r), i.e.

fl(r) = f bl (r) (10)

for r ≤ r0.

We can determine Kl (and hence σl) from f bl (r) by matching logarithmic derivatives

at the boundary r = r0.

So, define

γ ≡
"

df bl
dr

1

f bl

#

r=r0

=

"

dfal
dr

1

fal

#

r=r0

. (11)

Substituting for fal , fal
′ from (5) we have

Kl = tan δl =
s′l(kr0) − γsl(kr0)

γcl(kr0) − c′l(kr0)
, (12)

where the value of γ is given by the logarithmic derivative of f bl . We thus require to
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determine f bl . For l = 0, s0 = sin and c0 = cos and

K0 = tan δ0 =
k cos(kr0) − γ sin(kr0)

γ cos(kr0) + k sin(kr0)
. (13)

Since f bl (r) is required only over a finite range, 0 ≤ r ≤ r0, we can approximate it by a

suitable linear combination of convenient basis functions ui(r). Thus,

f bl (r) =
∞
X

i=0

aiui(r). (14)

The coefficients ai are determined by requiring that f bl (r) satisfies

 

d2

dr2
− l(l + 1)

r2
− V (r) + k2

!

f bl (r) = 0 (15)

still, at least to a certain level of accuracy.

Various alternatives are possible. The Wigner–Eisenbud method is one of the most
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commonly used in atomic physics. We illustrate the case of l = 0. Then, we have that

 

d2

dr2
− V (r)

!

ui(r) = −k2
iui(r), (16)

for i = 1, 2, . . .∞, over 0 ≤ r ≤ r0, subject to the boundary conditions

ui(0) = 0 (17)

and
»

dui

dr

1

ui

–

r=r0

= b, (18)

where b is a fixed (which characterizes Wigner–Eisenbud) arbitrary number.

The boundary condition (18) results in a discrete e-value spectrum {k2
i : i = 1, 2, . . .∞}.

Note,
Z r0

0

uiujdr = δij, (19)
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for i, j = 1, 2, . . .∞, on renormalizing the ui.

With

f
b
0(r) =

∞
X

i=1

aiui(r) (20)

then

ai =

Z r0

0

ui(r)f
b
0(r)dr. (21)

By multiplying (15) by ui(r) and (16) by f b0(r), subtracting and integrating over r,

we have
Z r0

0

dr

 

f
b
0

d2ui

dr2
− ui

d2f b0
dr2

!

= (k
2 − k

2
i )

Z r0

0

uif
b
0dr. (22)

On integrating by parts, we obtain

"

f b0
dui

dr
− ui

df b0
dr

#

r=r0

= (k2 − k2
i )ai, (23)

which determines the ai.
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At r = r0,

f b0(r0) =
∞
X

i=1

aiui(r0) (24)

=
∞
X

i=1

ui(r0)

k2 − k2
i

"

f b0
dui

dr
− ui

df b0
dr

#

r=r0

. (25)

On substituting for the logarithmic derivative γ (11) into (25), and using our boundary

condition (18), we have

γ = b+
1

R
(26)

where the R-matrix, R, is defined by

R ≡
∞
X

i=1

[ui(r0)]
2

k2
i − k2

. (27)
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Determination of R then enables K0 = tan δ0 to be determined from (via γ)

K0 =
− sin(kr0) +R(k cos(kr0) − b sin(kr0))

cos(kr0) +R(k sin(kr0) + b cos(kr0))
. (28)

Generalization to non-zero angular momentum (l > 0) and the Coulomb potential in the

external region is straightforward (see Burke & Robb, 1975).

We note that the R-matrix consists of a series of poles along the real k2 axis. If k2 is

near one of the poles k2
i , then R(k2) can be approximated by a single term,

R(k2) ≈ [ui(r0)]
2

k2
i − k2

. (29)

Even if the original potential satisfied by fl(r) is the same one used to determine the

ui(r), there is still an advantage since we need only solve it a small number of times to

determine the basis functions but can then determine the scattering cross section at the

very large number of energies necessary to resolve resonance structure. Furthermore, if we
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choose a basis set v0
i which is easily evaluated, say

 

d2

dr2
+ V0(r) + k

2
0i

!

v
0
i = 0. (30)

Then, if we approximate the first N e-solutions ui, for i = 1, 2, . . . N , by

ui ≈ v
(N)
i =

N
X

i′=1

c
(N)

i′i v
0
i′, (31)

we can expand

f
b(N)
0 (r) =

N
X

i=1

a
(N)
i v

(N)
i , (32)

where f
b(N)
0 (r) is an approximate solution to the exact solution f b0(r) at k2. Then

R(N) =
N
X

i=1

h

v
(N)
i (r0)

i2

k
(N)2
i − k2

, (33)
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where k
(N)2
i ≥ k2

i , for i = 1, 2, . . . N and k
(N)2
i and c

(N)

i′i are determined by diagonalizing

L
(N)

ii′ = −
Z r0

0

v0
i

 

d2

dr2
+ V (r)

!

v0
i′dr, (34)

for i, i′ = 1, 2, . . . N , i.e.

c
(N)T · L

(N) · c(N)
=
h

k
(N)
i2

= diag
“

k
(N)2
i

”

. (35)

Thus, we only require to converge the sum over N . The rate of convergence can be

improved by correcting for the effect of higher poles: N + 1, . . .∞ — this is the Buttle

correction:

Solve for v0(r) at a non-pole energy k2. Then, from (26)

R0 = [γ − b]−1
r=r0

= v0(r0)

"

dv0(r)

dr
− bv0(r)

#−1

r=r0

. (36)
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The Buttle correction, Rc, is given by

R
c
= R

0 −
N
X

i=1

ˆ

v0
i (r0)

˜2

k2
0i − k2

. (37)

Then, the Buttle-corrected R-matrix is given by

R = R
(N)

+R
c
, (38)

i.e. the high poles (> N) are approximated by the zero order basis.

The power of the R-matrix method lies with the fact that we have replaced solving

complex multi-channel coupled integro-differential equations (in the general scattering

case) by a small set of uncoupled ordinary differential equations (the potential V0 can be

fairly crude) and a matrix diagonalization (34). This diagonalization has to be carried-out

only ONCE to enable the R-matrix to be determined at ALL energies. This is of enormous

importance for the low-energy cross sections which are dominated by narrow resonance

structures and require a solution at ∼ 104 energies.
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The main drawback to the R-matrix method is that it does not scale well to ‘high’

energies. To determine the R-matrix and, hence, cross section at k2, say, requires N to

be sufficiently large so that the highest few basis energies k2
i satisfy k2

i > k2. Typically, it

is only practical to work with N = 20 − 50 as matrix diagonalization is an N 3
r process,

where Nr is the rank of the matrix. Here Nr = N × Nc where Nc is the number of

scattering channels required to describe the problem. In a complex atom the number of

channels increases rapidly. The current practical limit utilizing massively parallel machines

(e.g. 5000 processors) is a rank of Nr ≈ 150, 000. We also require to carry out this

diagonalization ≈ 100 times (so as to converge the partial wave expansion).

However, we only need solve the scattering problem with the R-matrix method up to

a few times the ionization energy of the atom so as to establish its high energy behaviour.

This is then easily connected to its infinite energy solution, which is identical to that of a

(maybe relativistic) plane wave.
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Outer Region Solutions

We have gone into the solution of the collision problem in the inner region in some detail.

But, as noted, this must be matched to the outer region solution for us to be able to

extract the scattering probability etc. In the outer region we have, maybe, a Coulomb

potential plus long-range multipole potentials (1/rλ+1, λ ≥ 1).

Solution in the outer region is computationally non-trivial — the coupled differential

equations need to be solved at every energy, maybe several tens of thousands. We initially

solve the uncoupled Coulomb (or plane wave) problem and treat the long-range multipole

potentials as a perturbation. We can also factor-out much of the strong energy dependence

of the scattering matrices, and so interpolate them as a function of energy — multi-channel

quantum defect theory. Even so, it is common for the outer region problem to take more

computer time than the inner region.

Both regions are amenable to massively parallel calculations — matrix diagonalization

via scaLAPACK, while the outer region solution is embarrassingly parallel by energy.
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Code Suite Overview

STG3R

STGF STGB

STGBBPREBF
STGBF

Electron collisions

Oscillator strengthsPhotoionization

Bound states

D

H

"Outer region" codes (OP)

"inner region"

R−matrix

codesBPRM

DARC
STG1R

STG2R

STGJK

GRASP

DSTG2

DSTG1

DSTG0

codes
StructureAUTOSTRUCTURE

SUPERSTRUCTURE
CIV3

DTO3

Practical implementation; code suite: http://amdpp.phys.strath.ac.uk/UK RmaX
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Parallel Classic R-matrix

• Parallel and serial Classic R-matrix codes are available at the UK RmaX website (userid:

UK RmaX password: H.DAT - only necessary for accessing parallel suite)

http://amdpp.phys.strath.ac.uk/UK RmaX/

• Contain many useful features developed over many years.

• Want to use on different parallel architectures: SMP & Beowulf clusters.

• Want to use on many systems: x86 clusters, Itanium Altix SMP, IBM SP, Cray X1E

etc. i.e. portability is paramount.
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Parallel Strategy

General philosophy: do as little message passing as possible — rather, compute same thing

independently on each processor (degrades scaling, but then so does slow MPI). Maintain

interchangeability of passing files with serial codes.

• PSTG1R: Distribute generation of bound-continuum and continuum-continuum

integrals over a node (whole integrals).

• PSTG2R: Distribute clusters of symmetries over a node.

• PSTG3R, PSTG3NX: Use scaLAPACK (1.7) PDSYEVD to diagonalize a matrix

distributed over many processors (NOT a distribution by symmetry — don’t have

enough memory).

• PSTGB: Distribute clusters of symmetries over a node.

• PSTGF, PSTGICF: Distribute by energy over many processors.
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Application: RMPS

Recall,

Ψ = AΣ

Z

ν

ψνφ . (39)

The R-matrix with pseudo-states approach (like CCC) replaces the sum over high

Rydberg states and the integration over continuum states by a quadrature over Laguerre

states.

The continuum basis plus Laguerre basis is over complete. The original RMPS

implementation of Bartschat et al (1996) just Schmidt orthogonalized the two and

discarded high-lying basis states. Badnell and Gorczyca (1997) diagonalize the matrix of

overlaps to form the reduced linearly independent basis. The Buttle correction is also

transformed appropriately, noting that the one-body Hamiltonian is no longer diagonal.

In fusion plasmas, visible-VUV spectroscopy of light neutral atoms and near neutral ions

follows from excitation of n = 3 and n = 4 levels. These are strongly coupled to the

continuum. All non-RMPS excitation data is suspect.
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B+: Effective collision strengths for excitation, from (a) the 2s2 1S ground term and (b) the 2s2p 3P

metastable term, to the 2s4s 1S upper term. The blue curves are from the present 20CCR-matrix calculation,

the red curves are from the present 114CC RMPS calculation, and the green curves are from the present

134CC RMPS calculation.

– R-matrix – 25



0

0.01

0.02

0.03

0.04

3 3.5 4 4.5 5 5.5 6

E
ff
e
ct

iv
e
 c

o
lli

si
o
n
 s

tr
e
n
g
th

Log T(K)

(a)

0

0.25

0.5

0.75

1

3 3.5 4 4.5 5 5.5 6

E
ff
e
ct

iv
e
 c

o
lli

si
o
n
 s

tr
e
n
g
th

Log T(K)

(b)

B+: Effective collision strengths for excitation, from (a) the 2s2 1S ground term and (b) the 2s2p 3P

metastable term, to the 2s4f 3F upper term. The blue curves are from the present 20CCR-matrix calculation,

the red curves are from the present 114CC RMPS calculation, and the green curves are from the present

134CC RMPS calculation.
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RMPS adf04

Maxwell-averaged upsilon files exist for:

• H-: H, He+, Li2+, Be3+, B4+, C5+

• He-: He, Li+, Be2+

• Li-: Li, Be+, B2+, C3+

• Be-: Be, B+, C2+

• B-: B

• Neutral Ne, BP, low energy only.

Badnell, Ballance, Griffin, Mitnik in a series of J.Phys.B papers.

– R-matrix – 27



MQDT/ICFT

Multi Channel Quantum defect Theory (MQDT):

Koo = Koo − Koc [Kcc − tan(πν)]
−1 Kco

Soo = Soo − Soc

h

Scc − e−2πiν
i−1

Sco

Do = Do − Soc

h

Scc − e
−2πiν

i−1

Dc

• Applies to all closed-channels.

• Include long-range coupling potentials by retaining only the finite part of the divergent

integrals (Gorczyca et al 1996).

• Intermediate Coupling Frame Transformation R-matrix approach (ICFT) then terms-

couples the entire unphysical K- or S-matrix.
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ICFT validation

Griffin et al (1998)

• Resonance series converge on levels ICFT, GFT unlike JAJOM.

• Background is correct for ICFT, unlike JAJOM, GFT.
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Ni4+

Badnell and Griffin (1999)

• ’Correlation’ resonances, which arise in Soo, are well represented.
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RM ICFT: along isoelectronic sequences

• Create a baseline database for electron-impact excitation which includes resonant

enhancement: all ions of a sequence up to Zn (or Kr).

• Consider shell boundaries: H-, He-, Li- and F-, Ne-, Na-.

• Use (Perl) script to automate R-matrix calculation — requires reliable, robust codes.

• Works on serial or parallel machines.

• Uses autostructure (for structure and infinite energy limit points Bethe/Born) and

ICFT R-matrix approach.

• End product: adf04 file.

• R-matrix analysis package (RAP) has been developed by Mike Witthoeft (Python-based

GUI) to validate the large amount of data.
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• F-like sequence: see Witthoeft, Whiteford & Badnell J.Phys.B40, 2969 (2007).

• Na-like sequence:

Outer-Shell: (nl → n′l′) for n, n′ = 3−6 — see Liang, Whiteford & Badnell Astron.

Astrophys. 500, 1263 (2009)

Inner-shell: 134CC (2p63l, 2p53l3l′, ex 3d2) allowing for Auger and radiation

damping of resonances — Liang, Whiteford & Badnell J.Phys.B (At Press)

• Ne-like: 209CC 2sp2pqnl (n = 2 − 5) and 2p22p5n′l′(n′ = 6, 7 l′ = 0 − 2) —

Liang & Badnell (In progress)

• H-like and He-like sequences in ADAS — Witthoeft & Whiteford, methodology as per

previously published for single ions (i.e. allows for radiation damping.)

• Li-like: simpler version of Na-like (TBD)
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Example: F-like sequence

• 2s22p5, 2s2p6, 2s22p43l, 2s2p53l, 2s22p44l: 87 terms and 195 levels.

• All ions from Ne+ to Kr27+.

• Structure automatically optimized for each individual ion.

• Good agreement of gf -values with Fawcett (1984).

Energy meshes used for each ion - note overlaps as checks.
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Energy mesh convergence
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Si5+, at 7.2 × 104K. Only 2.5% of transitions give rise to differences exceeding 10%.
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Fine-structure transition
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Red curve: ICFT-RM; blue curve: BPRM, Berrington et al (1998). T = 103z2K.
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The march of the resonances
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Fe17+
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Comparison, for all transitions from the ground level, with previous results of Witthoeft et al (2006).
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Dirac R-matrix for heavy species

Our preferred approach to electron-impact excitation for ADAS is R-matrix. Autoionizing

levels are included implicitly by it rather than explicitly within the GCR modelling.

Main drawback is that R-matrix calculations are computationally demanding (impossible)

for complex (i.e. heavy) species.

Semi-relativistic plane-wave Born (SR-PWB) excitation data from Cowan’s code (CA

and level-resolved) and autostructure (level-resolved only) provide complete ‘baseline’

coverage.

We have incorporated the Dirac R-matrix code within our parallel and radiation damped

framework.

We compare the effect of using R-matrix as opposed to SR-PWB data on the resultant

spectral signature of Ni-like Xe26+, as an example, (Badnell et al 2004).
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STG3R

STGF STGB

STGBBPREBF
STGBF

Electron collisions

Oscillator strengthsPhotoionization

Bound states

D

H

"Outer region" codes (OP)

"inner region"

R−matrix

codesBPRM

DARC
STG1R

STG2R

STGJK

GRASP

DSTG2

DSTG1

DSTG0

codes
StructureAUTOSTRUCTURE

SUPERSTRUCTURE
CIV3

DTO3

Flow diagram illustrating the interconnectivity between the Breit–Pauli, Dirac–Coulomb and Opacity Project

(OP) R-matrix code suites.
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Results of 129CC Dirac-Coulomb R-matrix calculation

(3d10, 3d9nl, n = 4 − 5, l = 0 to n− 1.)

0.06

0.08

0.1

0.12

0.14

0.16

5 5.5 6 6.5 7 7.5 8 8.5

E
ffe

ct
iv

e 
co

lli
si

on
 s

tr
en

gt
h

Log T(K)

 

Effective collision strengths for the 3d10 1S0 − 4d1S0 transition in Xe26+:

Red curve, 129CC Dirac–Coulomb R-matrix; black curve, plane-wave Born (baseline data).
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1-16

3d10 − 3d94p (J = 0 − 1)

Diamonds, plane-wave Born collision strengths.
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Dirac–Coulomb R-matrix excitation data; blue curve, utilizing plane-wave Born (baseline) excitation data;

both for Xe26+ only. (The feature between 16–18 Å arises from other Xe ionization stages.)
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Heavy Species - the future

• Stabilize parallel Dirac-Coulomb R-matrix codes —- dipole matrices. (Pretty much

done.)

• Port QED/Breit interaction from GRASP to DARC ⇒ Dirac-Breit R-matrix.

• Investigate fully-relativistic treatment for the ‘outer region’.

• Dirac RMPS using L-spinors. (Done.)

• ICFTR: ICFT breaks down at & Kr ⇒ use kappa-averaged relativistic wavefunctions.
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Towards ICFTR

ICFT R-matrix method is less computationally demanding than BP/DARC.

⇒ Of interest to extend ICFT via using relativistic orbitals.

The ICR approach (in autostructure) averages the orbitals over kappa, neglects the

small component (in general) and then carries-out the radial integrals required for the BP

structure.

The relativistic analogue of integrals (RI) method takes fully relativistic radial integrals

from GRASP and averages over kappa and feeds them back into the BP structure.

Some comparisons:
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Energy levels (Ry) in W70+. (From Jonauskas et al JPB v38 L79 (2005), +ICR.)

Index Level IC HFR DF RI ICR

1 2s2 1S0 -14472.2313 -14606.1630 -14661.2007 -14661.2127 -14660.1972

2 2s12p1 3P0 11.8033 9.5122 12.7642 13.3690 12.4027

3 2s12p1 3P1 14.4817 12.5698 15.6393 16.3163 15.4486

4 2p2 3P0 32.9833 29.5304 35.8501 36.6611 35.0358

5 2s12p1 3P2 101.4780 125.3516 123.2548 122.9797 123.2114

6 2s12p1 1P1 107.3621 131.9927 129.7459 129.3913 129.8507

7 2p2 3P1 119.6724 141.7643 142.9160 143.2261 142.6208

8 2p2 1D2 121.6674 143.8498 144.8975 145.2266 144.7094

9 2p2 3P2 210.3791 258.4229 254.3276 253.8651 254.5042

10 2p2 1S0 214.6380 262.8561 258.6676 258.1166 258.9496

Note, I obtain DF ground at -14660.2 with both uniform and Fermi charge nucleus.

Radiative decay of the U89+ 1s2s2p 4P5/2 metastable level.

∆E(M1) ∆E(M2) S(M1) S(M2)

IC 6972.7 7172.1 0.0255 0.00221

ICR 7075.5 7407.2 0.0632 0.00231

DF 7078.0 7409.9 0.0573 0.00236

ICR more elegant — more self-contained ⇒ extend to ICFTR by coding for a BP R-matrix

kappa=averaged relativistic continuum basis along the same lines.
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