Working with excited population structure

- Datasets of class ADF04 contain all the information necessary to evaluate excited populations of an ion. It is called a 'specific ion file'.
- Code ADAS205 computes the populations at temperatures and densities of your choice.
- The input, data set selection, screen is very similar to that for ADAS201

Populations calculation (contd.)

Distinguish metastable levels X_{ρ}^{+z} indexed by Greek letters and ordinary levels X_{i}^{+z} indexed by Roman letters

Write the quasi-static equations for the ordinary levels populations in terms of the metastable populations as:

$$\sum_{j=1}^{O} C_{ij} N_{j} = -\sum_{\sigma=1}^{M} C_{i\sigma} N_{\sigma} + N_{e} N_{1}^{+} r_{i} + N_{e} N_{H} q_{i}^{(CX)} \quad i = 1, 2, \dots$$

$$C_{ij} = -A_{j \to i} - N_e q_{j \to i}^{(e)} - N_p q_{j \to i}^{(p)} \qquad i \neq j$$

$$C_{ii} = \sum_{j < i} A_{i \to j} + N_e \sum_{j \neq i} q_{i \to j}^{(e)} + N_p \sum_{j \neq i} q_{i \to j}^{(p)} + N_e q_i^{(I)}$$

Populations calculation (contd.)

Solution for the ordinary populations is

$$\begin{split} N_{j} &= -\sum_{i=1}^{O} C_{ji}^{-1} \sum_{\sigma=1}^{M} C_{i\sigma} N_{\sigma} + \sum_{i=1}^{O} C_{ji}^{-1} r_{i} N_{e} N_{1}^{+} \\ &+ \sum_{i=1}^{O} C_{ji}^{-1} q_{i}^{(CX)} N_{H} N_{1}^{+} \\ &\equiv \sum_{\sigma=1}^{M} \mathscr{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \mathscr{F}_{j1}^{(rec)} N_{e} N_{1}^{+} + \mathscr{F}_{j1}^{(CX)} N_{H} N_{1}^{+} \end{split}$$

Populations calculation (contd.)

Spectrum line emissivities are

$$\mathcal{E}_{j \to k} = A_{j \to k} (\sum_{\sigma=1}^{M} \mathscr{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \sum_{\nu'=1}^{M_{z+1}} \mathscr{F}_{j\nu'}^{(rec)} N_{e} N_{\nu'}^{+} + \sum_{\nu'=1}^{M_{z+1}} \mathscr{F}_{j\nu'}^{(icn)} N_{e} N_{\nu'}^{+} + \sum_{\mu'=1}^{M_{z-1}} \mathscr{F}_{j\mu'}^{(ion)} N_{e} N_{\mu'}^{-})$$

Identify excitation and recombination photon emissivity coefficients as

$$\mathscr{P\!\!e\!C}_{\sigma,j\to k}^{(exc)} = A_{j\to k}\mathscr{F}_{j\sigma}^{(exc)}$$

$$\mathscr{P}\!\mathscr{E}\!\mathscr{C}^{(rec)}_{\upsilon',j\to k} = A_{j\to k}\mathscr{F}^{(rec)}_{j\upsilon'}$$

ADAS205 processing

Populations and line ratio studies (contd.)

- Output options
 - » Graphical display of the $\mathscr{F}_{j\sigma}^{(exc)}$ as a function of density is allowed.
 - » An output file of the $\mathscr{F}_{j\sigma}^{(exc)}$, called the 'contour' pass file, can be generated. This file must be created to allow the next step of looking a line ratios.

ADAS205 output - text

ADAS205 output - graphics

ADAS205 OUTPUT OPTIONS	· 🗆	
Data File Name: /afs/@cell/u/adas/adas/adf04/adas#2/mom97_ls#h	e0.dat	
Browse Comments		chow graphic
Select output option settings for display: 🚺 Graphies 🗍 Text		output
▼ Graphical Output Graph Title	Graph Temperature	choices
Explicit Scaling X-min : X-max : I Y-min : I Y-max : I	2.000E+00 eV 3.000E+00 eV 5.000E+00 eV 7.000E+00 eV Select Device	graphs may be shown a one Te only
▼ Enable Hard Copy _ Replace File Name : graph.ps	Post-Script HP-PCL HP-GL	
Cancel Done		

ADAS205 graph

Print button is present if graphic file chosen

Setting up lines

- Code ADAS207 is the diagnostic analysis program which allows study of line ratios.
- It needs the 'contour' pass file of populations. It also fetches the specific ion file, of type ADF04, which was used in the population calculation.

Setting up lines (contd.)

The program in deals with two line assemblies which from the numerator and denominator of the line ratio.

The composite emissivity for a line assembly is written as

$$\begin{split} \mathcal{E}_{G} &= \sum_{j \in J_{G}, i \in I_{G}} \mathcal{E}_{j \to i} = \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} N_{j} \\ &= \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} \left(\sum_{\sigma=1}^{M} \mathscr{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \mathscr{F}_{j1}^{(rec)} N_{e} N_{1}^{+} + \mathscr{F}_{j1}^{(CX)} N_{H} N_{1}^{+} \right) \\ &= N_{e} N_{1} \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} \left(\sum_{\sigma=1}^{M} \mathscr{F}_{j\sigma}^{(exc)} \frac{N_{\sigma}}{N_{1}} + \mathscr{F}_{j1}^{(rec)} \frac{N_{1}^{+}}{N_{1}} + \mathscr{F}_{j1}^{(CX)} \frac{N_{H}}{N_{e}} \frac{N_{1}^{+}}{N_{1}} \right) \end{split}$$

Diagnostic line ratio modelling deals with $\mathcal{E}_{G_1} / \mathcal{E}_{G_2}$

ADAS207 processing

ADAS207 line assembly

Lines for First Composite Assembly					
		175 07 1c0 0c1 5p1 (1)p.			
= 1 2 152 251 2P1 (3)P(4.0) IM 152 252 (1)S(0.0)	$ \begin{bmatrix} -3 & -5 & -5 & -5 & 222 \\ -3 & -5 & -5 & 222 \\ -3 & -5 & -5 & -5 & -5 \\ -3 & -5 & -5 & -5 &$	_ 175 37 152 251 5P1 (1)P			
▼ 2 3 152 251 2P1 (1)P(1.0) 1M 152 252 (1)S(0.0)	$ \begin{bmatrix} -3 & 67 & 6 & 152 & 2P2 \\ -3 & -67 & 6 & 152 & 2P2 \\ -3 & -67 & -67 & -67 & -67 \\ -3 & -67 & -67 & -67 & -77 \\ -3 & -67 & -67 & -77 & -77 \\ -3 & -67 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 & -77 & -77 \\ -3 & -77 & -77 &$				
$\begin{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	59 8 152 251 351 (1)5(0.0) 3 152 251 2P1 (1)P(1.0)				
$\begin{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	☐ 73 12 1S2 2S1 3D1 (1)D(2.0) 3 1S2 2S1 2P1 (1)P(1.0)	_ 194 26 1S2 2P1 3D1 (1)P			
	☐ 76 15 1S2 2P1 3P1 (1)P(1.0) 3 1S2 2S1 2P1 (1)P(1.0)	_ 196 30 1S2 2S1 4₽1 (1)₽			
$\begin{bmatrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	☐ 78 17 1S2 2P1 3P1 (3)S(1.0) 3 1S2 2S1 2P1 (1)P(1.0)	_ 204 10 1S2 2S1 3P1 (3)P			
$ 18 \ 30 \ 1S2 \ 2S1 \ 4P1 \ (1)P(\ 1.0) \ 1M \ 1S2 \ 2S2 \ (1)S(\ 0.0) $	□ 82 21 152 2P1 3P1 (1)D(2.0) 3 152 2S1 2P1 (1)P(1.0)	_ 220 29 1S2 2S1 4P1 (3)P			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	□ 89 28 1S2 2S1 4S1 (1)S(0.0) 3 1S2 2S1 2P1 (1)P(1.0)	□ 226 38 1S2 2S1 5P1 (3)P			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	☐ 97 36 1S2 2S1 5S1 (1)S(0.0) 3 1S2 2S1 2P1 (1)P(1.0)	_ 235 14 1S2 2P1 3S1 (1)P			
	\square 109 10 1S2 2S1 3P1 (3)P(4.0) 4 1S2 2P2 (3)P(4.0)	_ 243 30 1S2 2S1 4P1 (1)P			
	⊥ 121 22 1S2 2P1 3D1 (3)D(7.0) 4 1S2 2P2 (3)P(4.0)	_ 246 37 1S2 2S1 5P1 (1)P			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	⊥ 123 24 1S2 2P1 3D1 (3)P(4.0) 4 1S2 2P2 (3)P(4.0)	_ 261 21 1S2 2P1 3P1 (1)D			
□ 33 11 1S2 2S1 3D1 (3)D(7.0) 2 1S2 2S1 2P1 (3)P(4.0)	⊥ 128 29 1S2 2S1 4P1 (3)P(4.0) 4 1S2 2P2 (3)P(4.0)	_ 268 28 152 251 451 (1)S			
□ 38 16 1S2 2P1 3P1 (3)D(7.0) 2 1S2 2S1 2P1 (3)P(4.0)	⊥ 146 8 1S2 2S1 3S1 (1)S(0.0) 5 1S2 2P2 (1)D(2.0)	_ 276 36 1S2 2S1 5S1 (1)S			
□ 39 17 1S2 2P1 3P1 (3)S(1.0) 2 1S2 2S1 2P1 (3)P(4.0)	⊥ 147 9 1S2 2S1 3P1 (1)P(1.0) 5 1S2 2P2 (1)D(2.0)	_ 289 17 1S2 2P1 3P1 (3)S			
□ 40 18 1S2 2P1 3P1 (3)P(4.0) 2 1S2 2S1 2P1 (3)P(4.0)	⊥ 152 14 1S2 2P1 3S1 (1)P(1.0) 5 1S2 2P2 (1)D(2.0)	_ 299 27 1s2 2s1 4s1 (3)s			
☐ _ 49 27 1S2 2S1 4S1 (3)S(1.0) 2 1S2 2S1 2P1 (3)P(4.0)	⊥ 158 20 1S2 2P1 3D1 (1)D(2.0) 5 1S2 2P2 (1)D(2.0)	_ 303 31 1s2 2s1 4D1 (3)D			
53 31 152 251 401 (3)D(7.0) 2 152 251 2P1 (3)P(4.0)	⊥ 163 25 1S2 2P1 3D1 (1)F(3.0) 5 1S2 2P2 (1)D(2.0)	_ 307 35 1s2 2s1 5s1 (3)s			
□ 57 35 1s2 2s1 5s1 (3)s(1.0) 2 1s2 2s1 2p1 (3)p(4.0)	_ 164 26 1S2 2P1 3D1 (1)P(1.0) 5 1S2 2P2 (1)D(2.0)	_ 333 29 1s2 2s1 4₽1 (3)₽			
☐ _ 65 4 1S2 2P2 (3)P(4.0) 3 1S2 2S1 2P1 (1)P(1.0)	_ 172 34 152 251 4F1 (1)F(3.0) 5 152 2P2 (1)D(2.0)	_ 337 33 1s2 2s1 4F1 (3)F			
tor lines to be					
included Make a maximum of 20 selections					
Cancel Done					

Displaying line ratios

- Output options
 - » The type of display of the ratio of line assemblies may be chosen.
 - » The contour form on the Te/Ne plane seems to be the favourite.
 - » Crosses on the graph mark the tabular points at which the populations were explicitly evaluated.
 - » The extensive range of controls on the plot scales and contour lines should be used to refine the diagnostic plot.

ADAS207 output

	ADAS207 OUTPUT OPTIONS	
	Contour Passing File Name:/afs/ipp/home/u/ugs/adas/pass/contour.pass	
	Data File Name: /afs/@cell/u/adas/adas/adf04/adas#2/mom97_ls#he0.dat	
	Browse Comments	
	Spectrum Line Intensity Ratio range: 1.4321D+00 - 2.5429D+01	
	Graphical Output: Diagnostic Contour Plot of spectrum line ratios on Temp/Density Plane	
	Diagnostic Contour Plot Title 👔	
	▼ Default Contour Scaling	
controls	Contour Spacing Contour Yalues Contour Interpolation	select
on contour	Logarithmic	type of
plotting	Linear 2 Linear	
		piot
	▼ Enable Hard Copy □ Replace Select Device	
	Post-Script	
	File Name :adas207_graph.ps Post-Script	
	HP-GL HP-GL	
	🛛 Text Output 🗌 Append 🗌 Replace Default File Name	usual
	File Name : jpaper.txt	(graph and text)
		output choices

ADAS207 graph

