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Atomic Structure Methods

It is deceptively simple to write down the structure problem to be solved

Ψ = Σ

Z

ν

aνψν . (1)

The total wavefunction for the atom Ψ is expanded in terms of a complete set

of (antisymmetric) basis states ψν (an N -product of one-electron orbitals)

with expansion coefficients aν.

Spherically symmetric problem → (θ, φ) problem solved. Use standard

angular algebra methods and packages are used, mostly based on Racah

algebra but also Condon and Shortley (Slater-states).

Only require to determine radial dependence of wavefunction.
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• Hartree/Dirac-Fock: coupled-set of radial equations result from formally

varying radial orbitals to give stationary value of an energy functional —

self-consistent solution: MCHF (Froese), HFR (Cowan), MCDF (Grant)

etc. (Expansion coefficients may also be determined this way, MCHF.)

• Configuration Interaction (CI): radial equations (usually uncoupled)

contain variational parameters (e.g. ”model potentials”) which are varied

(numerically) to minimize a computed energy functional: AS/SS, CIV3,

HULLAC

• As CI but using a self-consistent model potential: AS, HULLAC, FAC.

All approaches then, usually, construct and diagonalize the Hamiltonian to

give the final e-states and e-energies.

Basis expansion is slow to converge in general. A plethora of basis functions

are used: spectroscopic, psuedo (Laguerre), B-splines etc.

Pros & Cons: problems with converging HF for excited states. Local vs global

minimum, flexible enough variational parameters.

Scattering codes use only the simplest orbital bases: unique, orthogonal...
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Hamiltonian

♣ Schrödinger equation based (AS, CIV3, MCHF):

• Non-relativistic: kinetic, nuclear & electrostatic operators.

• Breit-Pauli: as above, plus one-body fine-structure (spin-orbit), and non-

fine-structure (Mass-Velocity & Darwin).

Fine structure mixes terms, non-fine-structure can be added to NR above.

• Breit-Pauli: as above, plus two-body fine-structure (spin-spin, spin-orbit,

spin-other-orbit).

• Breit-Pauli: as above, plus two-body non-fine-structure (orbit-orbit,

contact-spin-spin, Darwin).
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♣ Kappa-averaged Dirac equation based (± small component): radial

functions still depend only on nl, not nlj. Then using above Breit-Pauli

operators. (HFR one-body only, AS.)

♣ Dirac equation based, large and small component.

• Dirac-Coulomb (HULLAC, FAC)

• + (Generalized) Breit +QED (GRASP, Sampson/LANL)

Others: Sapirstein & Johnson, Desclaux, Chen...

Coupling schemes: LS, LSJ, jK, jj (unitary transformations).

What matters more are good quantum numbers...
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Atomic Structure Data

Bound-Bound

• Energy levels, (”All”)

• Ek and Mk radiative rates (”Most”)

Bound-Free

• Autoionization rates, DR (AS, HULLAC, FAC, MCDF(Chen) ...)

• Photoionization cross sections, RR (ditto)

Free-Free

• Infinite and finite energy Plane-wave Born (AS, Cowan)

– ADAS 2012 – 5



And More...

• Hyperfine

• Stark-mixing, DR

• ...
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Complex (Heavy) Species

• Unresolved Transition Array (UTA) Spectral shape — Bauche-Arnault,

Bauche & Klapisch

• Configuration-average (CA) collisions — AS/Cowan driven.

Both neglect configuration interaction.
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Atomic Collision Methods

Time-dependent methods solve the full Schrödinger equation — TDCC.

Time-independent methods expand the antisymmetric total wavefunction for

the target-plus-colliding particle Ψ in terms of a known complete basis of

target states ψν.

Ψ = AΣ

Z

ν

ψνφ . (2)

The expansion coefficients φ representing the colliding particle (projectile) are

then to be freely determined by a variational of the scattering matrix leading

to the continuum Hartree/Dirac-Fock equations.
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Coupled-channel methods

Resonances arise naturally when the scattering energy of an open-channel

coincides with that of a closed-channel.

Traditional close-coupling approximation truncates the expansion to a low-

lying set of closely-coupled atomic states — neglects ionization loss.

Pseudo-state expansions attempt to approximate the sum/integral over a

wide range of energies and work towards practical numerical convergence —

RMPS, CCC.

Complete basis expansions can be used over a limited energy range and volume

(particle in a box) — B-spline R-matrix, Intermediate Energy R-matrix.
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Distorted-wave methods

DW methods solve (elastic) uncoupled continuum Schrödinger/Dirac

equations and treat the (inelastic) coupling as a perturbation — can keep

problem small, a series of 2x2 calculations: AS/HULLAC/FAC/LANL &

UCL(historic)

Resonances are often neglected from electron-impact excitation, but not

recombination — DR. Use of the IPIRDW approximation (Independent

Processes Isolated Resonance using DW): AS/HULLAC/FAC

Simple ‘DW’: Coulomb or plane-wave Born for EIE & EII: ATOM or AS/Cowan

Heavy species: Baseline PWB → uplift to ‘proper’ DW.
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R-matrix

Probably the most successful method/code suite for electron-impact excitation

and photoionization (no so much for electron-ionization).

A close-coupling method which is very efficient at mapping-out resonances,

compared to CCC, UCL-IMPACT (historic) etc. (But not compared to

IPIRDW...)

Need to solve the coupled integro-differential scattering equations at tens, if

not hundreds, of thousands of energies and for ∼ 100 angular momentum

symmetries.
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Key Idea

Divide scattering region into two: an inner region that just encompasses the

atom/ion (wavefunctions ∼< 10−3, say, outside) and where the scattering

potentials are complicated (e.g. short-range); and an outer region where

we only have an asymptotic Coulomb potential and, maybe, dipole and

quadrupole coupling potentials (with analytic coefficients). Let the dividing

boundary radius be r0.

The inner region is a finite volume and we can expand our (to be determined)

continuum wavefunction in terms of a simple orthogonal basis of states

ui(r), say, with a fixed (outer) boundary condition given by the logarithmic

derivative:
d

dr
log(ui(r))

˛

˛

˛

˛

r=r0

=
u′
i(r)

ui(r)

˛

˛

˛

˛

r=r0

= b (3)

where b is usually taken to be zero (it must be a constant).

This leads to a set of discrete positive energy solutions k2
i , say (particle in a

box).
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The inner region solution at r = r0 for any scattering energy k2 is completely

characterized by the R-matrix:

R ≡

∞
X

i=1

[ui(r0)]
2

k2
i − k2

. (4)

The scattering matrix (hence, cross section) is determined by matching the

outer region solution to the inner region one at r0.

For example, for s-wave (l = 0) scattering off a neutral atom

K =
− sin(kr0) +R(k cos(kr0) − b sin(kr0))

cos(kr0) +R(k sin(kr0) + b cos(kr0))
. (5)

Here, K is the reactance matrix, which is simply related the the S-matrix.

A more detailed exposition, based on Burke & Robb (1975), is available.

– ADAS 2012 – 13



Web Links

http://amdpp.phys.strath.ac.uk/

http://amdpp.phys.strath.ac.uk/tamoc/

http://amdpp.phys.strath.ac.uk/autos/

http://amdpp.phys.strath.ac.uk/UK APAP/codes.html
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