Charge exchange spectroscopy

- Preliminaries
- ADAS series 5/series2 thermal charge transfer
- ADAS series 3 charge transfer with neutral beams

Preliminaries

• We are concerned with the charge exchange reaction

$$X^{+z_0} + D(1s) \to X^{+z_0-1}(i) + D^+$$

- It is state selective depending on the energy of the collision.
- Two regimes are of interest
 - (a) Thermal hydrogen as the donor in thermal plasma – a near-edge plasma phenomenon. Partially stripped receivers and excited donors may be involved.
 - (b) Hydrogen in fast beams a core plasma phenomenon localised in the beams. Mostly stripped receivers and ground state donors are involved.

Thermal charge transfer

- State selective charge transfer cross-sections are stored in ADAS format ADF24.
- ADF24 data is organised as a simple indexed list of transitions with each crosssection a function of energy.
- The series 5 code ADAS509 interrogates data format ADF24. As well as display, it allows conversion to thermal-thermal rate and preparation of these in a new format ADF14.
- ADF14 is organised as a simple indexed list, but the tabulation of each transition is as a two dimensional array as a function of donor and receiver temperatures.
- The series 5 code ADAS505 interrogates data format ADF14.
- Data is transferred from there (by hand) into ADF04 as a 1-dimensional locus through the 2-dimensional array – usually the donor and receiver temperatures are set equal.

Thermal charge transfer Processing with ADAS509

	Title for Run						
	Data File Name: /home/hps/adas_central/adas/adf24/scx#h0/scx#h0_cfm#c3.dat						
	Browse Comments						
	Polynomial Fitting						
	🗖 Fit Polynomial value % : 5						
	Select data Block						
Select	INDEX Donor Recvr Final Type Ion Ion State						
temperatures	1 H + 0 (1) C + 3 (1) Total 1						
for adf14 dataset	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Please enter the reactant mass numbers Domor: 2.0 Recvr: 12.0 Select Energies for output file Select Temperatures for TCX file Output Collision Energies Output Temperatures						
	INDEX Output Input 1 2.840E-02 3.757E-04 2 3.449E-02 6.163E-04 3 4.016E-02 8.683E-04 4 4.400E-02 1.157E-03 5 5.313E-02 2.008E-03						
	Edit Table Edit Table						
	Default Energy Values Default Temperature Values						
	Edit the processing options data and press Done to proceed						

Thermal charge transfer Extended ADF04 data format for CX

/home/adas/adas/adf04/adas#6/mom97_ls#c3.dat

		С	+ 3		6		4	5	20178	.4(1	S)	2931440.	.0(3S)						
			1	1S2	2S1		(2)0(0.5)		0	.0	{1}1.000	$\{2\}1.5$	00					
			2	1S2	2P1		(2)1(2.5)	6	4555	.4	{1}1.000)						
			3	1S2	3S1		(2)0(0.5)	30	2849	.0	{1}1.000)						
			4	1S2	3P1		(2)1(2.5)	32	0071	.2	{1}1.000)						
			5	1S2	3D1		(2)2(4.5)	32	4886	.1	{1}1.000)						
			6	1S2	4S1		(2)0(0.5)	40	1348	.1	{1}1.000)						
			7	1S2	4P1		(2)1(2.5)	40	8319	.8	{1}1.000)						
			8	1S2	4D1		(2)2(4.5)	41	0338	.5	{1}1.000)						
			9	1S2	4F1		(2)3(6.5)	41	0434	.2	{1}1.000)						
			10	1S2	5S1		(2)0(0.5)	44	5368	.5	{1}1.000)						
			11	1S2	5P1		(2)1(2.5)	44	8860	.5	{1}1.000)						
			12	1S2	5D1		(2)2(4.5)	44	9889	.2	{1}1.000)						
			13	1S2	5F1		(2)3(6.5)	44	9939	.8	{1}1.000)						
			14	1S2	5G1		(2)4(8.5)	44	9948	.4	{1}1.000)						
Thermal	\mathbf{N}		-1		~														
			4.0	-	3	8.00+03	1.60+	+04 3	.20+0	4 8.	00+04	1.60+05	3.20+0	5 8.00+05	1.60+06	3.20+06	8.00+06	1.60+07	
CX rate			3	1	1.00-30	5.68-UI	5.49-	-UI 5	.16-0	1 4.º	46-01 42 01	3.96-01	1 3.84-0	1 3.8/-01	3.83-01	3.83-UL	3.85-UL	3.86-UI	
coeffts.	人		5	T	4.5/+05	4.90-01	4.9/-	-01 5	.11-0	1 5.	43-01	5./9-01	6.24-0	1 /.90-01	9.58-01	1.08+00	1.18+00	1.21+00	
\checkmark		н	3	+1		1.00-13	1.42-	-13 2	.00-1	3 3.	67-13	3.40-12	2 6.46-1	1 1.02-09	3.98-09	1.11-08	3.02-08	5.13-08	
	1	н	4	+1		5.50-12	2.47-	-11 1	.41-1	0 9.	53-10	3.16-09	9 8.82-0	9 2.15-08	3.45-08	4.91-08	6.01-08	6.13-08	
		Н	5	+1		1.38-09	1.78-	-09 2	.12-0	9 2.	32-09	2.20-09	9 1.89-0	9 1.88-09	4.35-09	1.15-08	2.62-08	3.94-08	
		Н	6	+1		2.12-17	3.00-	-17 4	.25-1	7 8.	52-17	4.76-16	5 6.14-1	5 2.00-13	2.74-12	3.10-11	3.01-10	9.08-10	
		Н	7	+1		1.09-16	1.54-	-16 2	.18-1	64.	38-16	2.44-15	5 3.16-1	4 1.03-12	1.41-11	1.52-10	1.08-09	2.24-09	
		Н	8	+1		3.22-17	4.56-	-17 6	.45-1	7 1.3	29-16	7.23-16	5 9.33-1	5 3.01-13	4.14-12	5.26-11	8.12-10	3.18-09	
		Н	9	+1		3.72-17	5.26-	-17 7	.46-1	7 1.	49-16	8.35-16	5 1.08-1	4 3.51-13	4.80-12	5.46-11	5.37-10	1.78-09	
			1		•		•												
			-1	1															
			-1	-1															

Thermal charge transfer Processing with ADAS205 or ADAS208

	Title for Run Data File Name: /home/hps/adas_dev/adas/adf04/adas#6/mom97_ls#c3.dat Browse Comments Nuclear Charge: 6 Ion Charge: 3										
	Temperatures Densities										
	INDEX Electron Ion Neutral Hydrogen Imput Value 1 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02 6.000E+03 1.000E+03 0.0000 0										
	Image: Second										
thormal	Edit Table										
CX	Default Temperatures Default Densities										
\mathbf{X}	Metastable State Reaction Selection										
	Is2 2S1 (2)S(0.5) Image: Collisions IS2 2P1 (2)P(2.5) Image: Collisions IS2 3S1 (2)S(0.5) Image: Collisions										
	I 152 3P1 (2)P(2,5) I Ionisation Rates Neutral H Charge Exchange										
	☐ Free Electron Recombination										
	Cancel Done										

Charge transfer with neutral beams

- Interrogating state selective charge exchange cross-sections using ADAS301.
- Interrogating CXS effective emission coefficients using ADAS303.
- Calculating and examining effective emission coefficients using ADAS308.

Interrogating charge exchange cross-sections

- Datasets of class ADF01 contain state selective charge exchange xsect. (qcx) data as a function of energy.
- These data for bare nucleus light impurity receivers into nl-shells in general.
- The donors may be H, He or Li and can include donation from ground state and excited state. There are separate data sets for each excited donor state.
- Code ADAS301 interrogates ADF01 data sets and displays results at energies of your choice.

ADF01 charge exchange cross-sections

ADAS301 input

ADAS302 Processing

ADAS301 graph

Charge exchange effective emission

The line-of-sight integrated photon emissivity of a charge exchange driven line may be written as

$$\begin{split} I_{n \to n'}^{(z_0 - 1)} &= \sum_{l, l'} I_{nl \to n'l'}^{(z_0 - 1)} \\ &= \int_{S} \sum_{l, l'} A_{nl \to n'l'} N_{nl}^{(z_0 - 1)} ds \\ &= \int_{S} [\sum_{l, l'} A_{nl \to n'l'} (N_{nl}^{(z_0 - 1)} / N_D N^{(z_0)})] N_D N^{(z_0)} ds \\ &= \int_{S} [\sum_{l, l'} q_{nl \to n'l'}^{(eff)}] N_D N^{(z_0)} ds \\ &= \int_{S} q_{n \to n'}^{(eff)} N_D N^{(z_0)} ds \\ &\approx q_{n \to n'}^{(eff)} \int_{S} N_D N^{(z_0)} ds \end{split}$$

Interrogating CXS effective emission coefficients

- Datasets of class ADF12 contain CXS effective emission (qef) data as a function of beam and plasma parameters.
- These coefficients include the effect of collisional redistribution of nlsubstate populations of the receiver ion in the plasma.
- The individual components of the n->n' CX transition are not resolvable for bare nucleus receivers so only whole transition arrays are given.
- Code ADAS303 interrogates ADF12 data sets and displays results at beam and plasma conditions of your choice.

ADF12 charge exchange cross-sections

ADAS303 input

ADAS303 Processing

ADAS303 graph

Calculating CXS effective emission

- Datasets of class ADF01 state selective charge exchange cross-section data for capture by fully ionised ions.
- Code ADAS308 computes effective emission coefficients, predicts CXS line positions and profiles and deduces the beam plasma emission measure.

Calculating CXS effective emission (contd.)

• The driving reactions are

$$X^{+z_0} + D^0_{beam}(1s) \to X^{+z_0-1}(nl) + D^+_{beam}$$

• The effective emission coefficient for n-n' transition is

$$q_{n \to n'}^{(eff)} = \sum_{l,l'} A_{nl \to n'l'} (N_{nl}^{(z_0 - 1)} / N_D N^{(z_0)})$$

• Thus a collisional-radiative, resolved-nl population calculation is required to determine the effective emission coefficients.

Calculating CXS effective emission (contd.)

- File selection
 - » The fundamental state selective charge exchange x-sect data is format ADF01. These data are resolved into the nl shells of the receiver.
 - » Note that there are sub-directories for different donors and separate data sets for ground and excited donor states.
- Processing options
 - » Beam parameter, observed spectrum lines and required emissivity predictions must be entered using Table Editor.
 - » Then plasma conditions must be entered.
 - » Finally model for emission measure is chosen.
- Output options
 - » Graphical display of the spectral position, intensity and shape of a designated n-n' transition is given.
 - » Tabulations of predicted intensities of other lines are given together with the estimated emission measure.

ADAS308 Input

Calculating CXS effective emission (contd.)

- ADAS308 is designed to do more than solve for the effective emission coefficients, qef.
- The program computes the qef and solves for the emission measure given the line of sight intensity in a charge exchange line as

$$I_{n \to n'}^{(z_0 - 1)} \approx q_{n \to n'}^{(eff)} \int_{s} N_D N^{(z_0)} ds$$

- If more than one charge exchange line intensity, with different upper levels, the code can assess the consistency between experimental and theoretical data. ADAS308 casts this onto the consistency of the ADF01 total n-shell capture with observation.
- Most use of ADAS308 has been directed at qef and its components alone.

ADAS308 processing

I	- ADA	S308 PROCESSING OPTIONS	1
	Title for Run		
	Data File Name: /afs/@cell/u/adas/adas/adf01/	qcx#h0/qcx#h0_old#he2.dat Browse Comments	
	Receiver - Neutral dom Nuclear Initial Final Nuclear Symbol charge ion charge Symbol charge	or - lear Please input following receiver information:- rge Atomic mass number of receiver 4.0	
information	не 2 2 1 н 1		
from data set	Input beam and spectrum line information:- Beam parameter information Observed spectrum lines Required emissivity predictions	Input plasma parameter information: - Ion temp. (eV) : [5.0e+03] Elec temp. (eV) : [5.0e+03] Ion dens. (cm-3) : [2.5e+13] Elec dens. (cm-3): [5.0e+13]	masses required for ion collisions
various data required -	Required emissivity predictions Index Upper Level N level N Level N Key 1 4	Z effective : 1 2.00 B Magn. (I) : 3.00 Select charge exchange theory : Use input data set	
appropriate is table		Select douor state : H (15) Select emission measure model : Charge exchange	
displayed	Edit Table Note: maximum allowed N quantum no. : 20 minimum allowed N quantum no. : 1	Is rate table printing required? No	model choice -
key determines	<pre>Key: 1 = Graphical and tabular output (max. 2) 2 = Tabular output only (max. 5 non-blank entries) Blank = Summary only</pre>		data and CX
tables and graphs	Edit the processing	options data and press Done to proceed	

ADAS308 output

	ADAS308 OUTPUT OPTIONS						
	Data File Name: /afs/@cell/u/adas/adas/adf	01/qcx#h0/qcx#h0_old#he	2.dat Browse Comments				
	🗑 Graphical Output		Select Device				
	Graph Title 👔		Post-Script				
	□ Explicit Scaling X-min : ∐ Plot A: Y-min : ∐	X-max : X	Post-Script HP-PCL HP-GL				
two plots - stick and broadened	Plot B: X-min : <u>I</u> Y-min : <u>I</u>	X-max : <u>I</u>					
	□ Enable Hard Copy □ Replace File Name : ∐						
	☐ Text Output ☐ Replace Befault File N File Name : [Cancel Done	/2m#}					

ADAS308 graph

Mass production of CX effective emission coeffts.

- ADAS309 is the mass production code for the effective emission coefficients for charge exchange lines.
- The user input is similar to that for ADAS308 but there is no graphical output, nor does it attempt the inversion solution.
- Many transitions can be entered at the one time. An output file of effective emission coefficients is delivered fully formatted to the ADF12 specification.