Atomic Physics and the ITER Perspective

ITER Team

Michael Walsh and Robin Barnsley ITER Organisation

30/09/2013

Ack: Special thanks to all colleagues who provided support and information for this presentation

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

iten china eu india japan korea russia usa

ADAS-EU Meeting– September - 2013

Outline

- Brief overview of ITER
- General Diagnostics
- Spectroscopic System examples
- Where are we going
- Summary

All ITER Parties and many Institutes and Industries Involved

ADAS-EU Meeting- September - 2013

ITER project

ADAS-EU Meeting- September - 2013

The Wider View

ITER Site consists of 37 buildings each dedicated to a supporting plant system

ADAS-EU Meeting– September - 2013

© 2013, ITER Organization

china eu india japan korea russia usa

Site View now

iter china eu india japan korea russia usa

ADAS-EU Meeting- September - 2013

Huge strides in physics, engineering and technology:

- •Temperature (Ti): 10-20 keV
- •Density (ni): ~ $10 \times 10^{19} \text{ m-}3$
- •Energy confinement time (*t*): ~1 sec
- •Experiments in JET and TFTR have initiated the study of plasmas with significant fusion power : record fusion power production of 16MW (Q~0.6) at JET
- •Use of superconductors : record pulse length 6 minutes 18 sec at Tore Supra

Physics:

- ITER is designed to produce a plasma dominated by $\alpha\mbox{-particle}$ heating
- produce a significant fusion power amplification factor (Q ≥ 10) in long-pulse operation (300 – 500 s)
- aim to achieve steady-state operation of a tokamak ($Q \ge 5/ \le 3000$ s)
- retain the possibility of exploring 'controlled ignition' ($Q \ge 30$)

Technology:

china eu india japan korea russia usa

- demonstrate integrated operation of technologies for a fusion power plant
- test components required for a fusion power plant
- test concepts for a tritium breeding module

Is ITER different?

ITER is twice as large as our largest existing experiments

~500 MW 500s

~400 s

t_{plasma}

ADAS-EU Meeting- September - 2013

What do we need to see and measure?

fter china eu india japan korea russia usa

ADAS-EU Meeting- September - 2013

ITER Plasma Scenario - Example end result

ADAS-EU Meeting- September - 2013

Types of Systems Used

About 45 different diagnostic identified for different measurement roles

A- Magnetics systems B- Neutrons systems C- Optical systems D- Bolometry systems E- Spectroscopy systems F- Microwave systems G- Operational systems N- Electrical Services

All integrated directly in to machine or in the port plugs

ADAS-EU Meeting- September - 2013

How diagnostic functionality is grouped?

- 1) for machine protection or basic control
- 2) for advanced performance control, and
- 3) evaluating the plasma performance and understanding important physical phenomena

Measurement Requirements

Developed by International Teams based around ITPA

Now part of the ITER High Level Project Requirements

Next slide has some relating to Spectroscopy Require good atomic data to predict physics phenomena and signal intensities

Spectroscopy Diagnostics Measurements Requirements

MEASUREMENT	PARAMETER	CONDITION	RANGE or COVERAGE	RESOL	UTION	ACCURACY
10. Plasma Rotation	V _{TOR}		1-200 km/s	10 ms	a/30	30 %
	V _{POL}		1-50 km/s	10 ms	a/30	30 %
12.	Be, C rel. conc.		1x10 ⁻⁴ -5x10 ⁻²	10 ms	Integral	10 % (rel.)
	Be, C influx		4x10 ¹⁶ -2x10 ¹⁹ /s	10 ms	Integral	10 % (rel.)
	Cu rel. conc.		1x10 ⁻⁵ -5x10 ⁻³	10 ms	Integral	10 % (rel.)
	Cu influx		4x10 ¹⁵ -2x10 ¹⁸ /s	10 ms	Integral	10 % (rel.)
Impurity Species Monitoring	W rel. conc.		1x10 ⁻⁶ -5x10 ⁻⁴	10 ms	Integral	10 % (rel.)
	W influx		4x10 ¹⁴ -2x10 ¹⁷ /s	10 ms	Integral	10 % (rel.)
	Extrinsic (Ne, Ar, Kr) rel. conc.		1x10 ⁻⁴ -2x10 ⁻²	10 ms	Integral	10 % (rel.)
	Extrinsic (Ne, Ar, Kr) influx		4x10 ¹⁶ -8x10 ¹⁸ /s	10 ms	Integral	10 % (rel.)
28. Ion Temperature Profile	Core Ti	r/a < 0.9	0.5 - 40 keV	100 ms	a/10	10 %
	Edge Ti	r/a > 0.9	0.05 - 10 keV	100 ms	50 mm	10 %
32. Impurity Density Profile	Fractional content, Z<=10	r/a < 0.9	0.5 - 20 %	100 ms	a/10	20 %
		r/a > 0.9	0.5 - 20 %	100 ms	50 mm	20 %
	Fractional content, Z>10	r/a < 0.9	0.01 - 0.3 %	100 ms	a/10	20 %
		r/a > 0.9	0.01 - 0.3 %	100 ms	50 mm	20 %

ADAS-EU Meeting- September - 2013

 $^{\circ}$ 2013, ITER Organization I I I I T 20 C \sim \sim + 0012

When these are expanded to systems

china eu india japan korea russia usa

ADAS-EU Meeting– September - 2013

PBS	System	Wavelength/ Energy range	Function	Status
55E4	Divertor impurity monitor	200 – 1000 nm	Impurity species and influx, divertor He density, ionisation front position, T _i .	PA signed
55E2	Ha system	Visible region	ELMs, L/H mode indicator, n_T/n_D and n_H/n_D at edge and in divertor.	CDR closed
55E3	VUV spectroscopy - main	2.3 – 160 nm	Impurity species identification.	PA signed
55EG	VUV spectroscopy - divertor	15 – 40 nm	Divertor impurity influxes, particularly Tungsten	PA signed
55EH	VUV spectroscopy - edge	15-40 nm	Edge impurity profiles	PA signed
55ED	X-ray spectroscopy – survey	0.1 – 10 nm	Impurity species identification	PA signed
55EI	X-ray spectrometer - edge	0.4 – 0.6 nm	Impurity species identification, plasma rotation, T _i .	PA signed
55E5	X-ray spectroscopy-core	0.1 – 0.5 nm	Impurity species identification, plasma rotation, T _i .	CDR Jun 2013
55E7	Radial x-ray camera	1 – 200 keV	MHD, Impurity influxes, Te	PA signed
55EB	MSE	Visible region	q (r), internal magnetic structure	CDR Jan 2013
55E1	Core CXRS	Visible region	T _i (r), He ash density, impurity density profile, plasma rotation, alphas.	CDR Mid 2014
55EC	Edge CXRS	Visible region	T _i (r), He ash density, impurity density profile, plasma rotation, alphas.	CDR Oct 2012
55EF	BES	Visible region	Beam-attenuation and fluctuations.	CDR Oct 2012
55E8	NPA	10 keV,- 4 MeV)	$n_{\rm T}^{\prime}\!/n_{\rm D}^{}$ and $n_{\rm H}^{\prime}\!/n_{\rm D}^{}$ at edge and core. Fast alphas.	PA signed
55EA	Laser-induced fluorescence	Visible B-EU Meeting Sep	Divertor neutrals	Pre- CDR held
55E	china cu india japan korea rusia usa Hard X-ray Monitor ©2013, I	TEROOMer 20MeV	Runaway electron detection	CDR Early 2014

General Diagnostic Locations

tera china eu india japan korea russia usa 👘

ADAS-EU Meeting- September - 2013

General overview of a Hardware system on ITER

ADAS-EU Meeting- September - 2013

Integrated Upper Port #18

ADAS-EU Meeting- September - 2013

UV/Visible Spectroscopy

Ha and Vis has 4 views

• Ha and Vis - Can see inner and outer wall

- Divertor can be bright
- Significant Reflection analysis carried out
- Various mitigation techniques effort needed
- E.g. dumps and zeeman techniques etc

DIM has 3 views

ADAS has been part of plasma emission modelling for ITER diagnostic design studies since 1995.

Increasingly developed during the recent round of Conceptual Design Studies 2010-2013

- Wide range of ITER plasma scenarios start-up low current etc
- Wide spectrum now modelled Visible > UV > VUV > X-ray
- Can include instrumental effects in modelled spectra
- Lines of sight and fan-views can be set up to suit actual diagnostic design
- Whole new area opening up with ITER

ADAS-EU Meeting– September - 2013

u india japan korea russia usa

Wide range of plasma scenarios for ADAS-SANCO modelling

IFT 20 Com+ 0012

ADAS-EU Meeting– September - 2013

© 2013, ITER Organization

china eu india japan korea russia usa

Page 23

ADAS/SANCO Modelled emission of VUV spectral lines

W chordal profiles for various ionization stages & synthetic soft x-ray spectrum

china eu india japan korea russia usa

Total core radiated power is around 50 MW – mostly x-rays This is a strong test of atomic data and plasma modelling – Requires all excitation phenomena to be handled

Total radiated power profiles for a range of plasma scenarios

X-ray profile resolved into 5% energy bands

 $1 \Gamma T 20 C - - + 2012$

ADAS-EU Meeting- September - 2013

斗 🖌 china eu india japan korea russia usa

Page 26

Characteristic impurity radiated power profiles

SXR emission during a sawtooth event

Page 27

Active Spectroscopy

iter china eu india japan korea russia usa

ADAS-EU Meeting- September - 2013

ITER Active Beam Spectroscopy

CXRS principle:

Emission of spectral lines $\hbar \omega$ excited by charge exchange collision:

 $\begin{array}{rcl} A^{Z^{+}} + H & \rightarrow & A^{(Z-1)+}(nl)^{*} + H^{+} \\ A^{(Z-1)+}(nl)^{*} & \rightarrow & A^{(Z-1)+} + \hbar \omega \end{array}$

From spectrum analysis, ion density, temperature and velocity are obtained.

Also BES and MSE

Outline Design for Edge CXRS in Eq3

Measures the outer half of the plasma – key parameters

ADAS-EU Meeting- September - 2013

Overview of MSE

Line Splitting versus Line Polarisation now an important discussion

ADAS-EU Meeting– September - 2013

Where are we?

ADAS-EU Meeting- September - 2013

Present planning for ITER Diagnostics

Summary

- Conceptual design and integration of ITER spectroscopy is almost complete.
- Now entering Preliminary Design phase, in collaboration with international teams.
- ADAS has been essential input to diagnostic designs:
 - Management of huge atomic data archive
 - Availability of applications to retrieve and process atomic data
 - Availability of ADAS experts to model and interpret plasma emission
- Next steps
 - More detailed analysis to support the advanced design stages
 - Validation of system designs
 - Update plasma emission modelling with new atomic data as available
 - Prepare for operation and data analysis phase
 - Please help us to tackle the new challenges