
Module 4

Modelling and analysing special spectral features – A unified approach

Lecture viewgraphs

Hugh Summers, Christopher Nicholas, Andy Meigs, Martin O’Mullane and
Alessandra Giunta

University of Strathclyde

ADAS/ADAS-EU

Contents

1. Preliminaries and nomenclatures.

2. ADAS special feature – applications programming interface (API) and AFG.

3. ADAS605.

4. Combination of functions for spectral fitting - FFS.

5. Conclusions

1.1 Preliminaries

Basic analysis of spectra by fitting the individual line profiles and background in a spectral interval is the minimum
provided in ADAS by ADAS602. Also, a dedicated code, ADAS603, for handling Zeeman features was prepared built on
the xPaschen code of IPR Forschungszentrum Juelich.

Spectral fitting and analysis is part of the capabilities of all fusion laboratories. It is also a natural adjunct to an
atomic data and analysis structure. ADAS, at an early stage in its development, added some spectral analysis
codes in series 6.

At JET, some spectral intervals of special importance and/or complexity became the focus of dedicated fitting and
analysis methods (e.g. CXSFIT). Some, to which ADAS developers have contributed, are maintained as independent
codes by ADAS.

1.2 Preliminaries

In the planning the principal themes for ADAS-EU, it was decided to develop a general approach to spectral fitting,
closely linked to the atomic population modelling capabilities of ADAS, including complex composite features.

ADAS and its databases primarily operate as a forward modelling system, establishing populations of ions,
ionisation state, emissivities etc. as a function of key plasma parameters such as Te, Ne, magnetic field, beam
energy and so on.

By contrast, spectral analysis is usually a reverse analysis system, fitting amplitude, width and shape of spectrum
lines individually and independently of their origin. These extractions are later examined and contrasted with
predictions.

A derived data format of ADAS, such as an adf15 dataset for an ion, is (or closely related to) an abstract numerical
representation of the relative intensities of a whole set of spectrum lines as a function of the plasma parameters,
which are the ultimate objective of reverse spectral analysis. With the adf40 feature emissivity coefficients for
complex heavy ions, this is even more obvious. Equally, this is true of ADAS codes such as ADAS305.

We view these ADAS datasets and ADAS codes as special spectral features or more exactly as ADAS special
feature generators, which can be used as a whole in spectral analysis for the direct extraction of plasma
parameters in the fitting process.

1.3 Preliminaries

Zeeman split carbon line emission, from JET pulse
#70574, (R = 2:68 m, t = 60:28 s, diagnostic KT3C
using 300 lines mm-1 grating) at lower resolution.
Individual components are no longer resolved, instead
they appear blended together.

Zeeman split carbon line emission, from JET pulse #75989
(R = 2:8 m, t = 46:25 s, diagnostic KT3C using 1200 lines
mm-1 grating) recorded at sufficient resolution to resolve
several component lines of the feature.

The development is quite complex in design, using different coding techniques (object-oriented) from the remainder of
ADAS. Also, the whole system is still in the final stages of completion and incorporation.

CI (2p3s 3P – 2p3p 3P) CI (2p3s 3P – 2p3p 3P)

In this brief introduction, the Zeeman spectra below from JET will be used illustratively.

2.1 Accessing ADAS special features - AFG

The API provides a common access point to the
ADAS special features

The approach means that all external programs
can access ADAS special features in a structured,
consistent manner for each of the special
features.

The main drive behind the ADAS Feature Generator
(AFG) is to ease access to the ADAS special feature
routines such that they are easily incorporated into
any external modelling code (see FFS later). AFG
enables this to be done through a series of simple
commands — now common to all of the ADAS special
features. This is the Applications Program Interface
(API).

AFG is made more accessible via a graphical
user interface (GUI). This code, which also
fulfils a pedagogical role, is known as
ADAS605.

2.2 Class diagram for AFG

As illustrated on the right, each class is
represented by a rectangular box, split into
three compartments.

AFG is constructed using the object
oriented programming capabilities of
IDL.

The upper division is the class name, the
middle section contains the class attributes
(data members) and the lower segment
holds the names of the available class
methods (operations).

The arrows, pointing from one class to
another, indicate the inheritance
hierarchy.

2.3 AFG description structures, accessed through the ‘getdesc’ method

AFG feature parameter sub-structure
for the magnetic field strength, for the
Zeeman feature.

Examination of an AFG description
structure, for the Zeeman feature, at
the command line.

Command line interaction with AFG,
retrieving the description structure for
the Zeeman feature.

3.1 ADAS605 – input and processing screens

ADAS605 has been designed to use the AFG API intensively, such that the
interface is highly dynamic (i.e. its appearance is very much dependent upon
the feature under consideration).

The processing screen is split into two main
segments; the left hand side is consistently
the same regardless of the feature selected
— it is a graphical display area.

The right hand side is comprised of a set
of control widgets to alter the special
feature parameters and will therefore
adapt to the particular feature selected
from the input screen.

The control panel is not predefined in a
static fashion. Instead, ADAS605 is
examining the parameter description
structures returned from method calls to
the API.

In keeping with the pedagogical role of the interactive ADAS screens, a
graphical user interface has been prepared for AFG called ADAS605.

CI (2p3s 3P – 2p3p 3P)

3.2 ADAS605 – output screen

The output screen provides the familiar ADAS
graphical and text outputs, along with a further
output called Code listing output.

graphical
output

text output
 of x-y values

3.3 ADAS605 code listing output

AFG will auto-generate the appropriate
IDL source code (including in-line
comments) to generate the feature using
the API directly, rather than via the GUI.

It is envisaged that production of this
template source code will serve as an
entry point to most users looking to utilise
AFG in their own codes.

4.1 Setting up spectral fitting with complex features

In order to model complex spectra, it is useful to consider a composite structure in which various model
elements are assembled together to represent the various features present in the data.

In a mathematical sense, these model elements provide a set of basis functions for the model.

A useful analysis system requires a reasonable set of these elements, from basic spectral feature
representations, such as a Gaussian line, to complex features coming from specialised
modelling codes.

ADAS (via AFG) provides the complex features coming from specialised modelling codes.

Attention is given to the mathematical formulations for the calculation of the most commonly occurring
features and their partial derivatives.

The analytic representations of the partial derivatives provide substantial improvements in performance
for the fitting algorithm.

Each of the functions defined here (including intermediates such as the broadening functions) are
implemented, programmatically in the Framework for Feature Synthesis (FFS) system.

4.3 Class diagram for FFS

4.4 FFS

On the right, the model-element-par hierarchy
for a simple model in FFS, consisting of two
Gaussian lines and a Voigt line shape is shown.
The Gaussian shapes have three parameters:
position, full-width at half maximum and area.
The Voigt has four: position, Lorentzian
component of width, Gaussian component of
width and area. The three elements, in this case
also have a property ‘trap’.

The model on the right has only a single
layer of elements in the tree structure—
elements that are independent of each
other

FFS is not limited to this case — there is
support for operator elements that take the
output of one or more of the other elements
as input. To manage this in a generalised
way, the ffs_element class caters for the
storage of ‘child elements’ i.e. those
elements on which it is dependent. By
storing a reference to a ‘root’ element, the
ffs_model element can then initiate
recursive traversal of the tree to ensure
that element results are calculated in the
correct order.

4.5 FFS element class

The FFS element class and some example sub-classes
are shown on the right. Note that the class data entries
are intentionally blank for the subclasses — they only
have inherited data members.

In terms of implementation, ffs_element is an abstract
class, from which FFS component features should
inherit.

On the right is shown a few example features
gaining access to the plethora of methods available
from the superclass.

Note that the subclasses are, in all cases,
required to supply a ‘calculate’ method which
overrides the abstract method in the ffs_element
superclass. This method provides the means to
evaluate the spectral component.

If available, the ffs_element subclasses also provide analytical forms for the
partial derivatives of the element (with respect to its parameters) via method
‘calcpd’. If not, then a call to ‘calcpd’ will result in usage of the superclass
implementation, which uses a finite difference method to evaluate these
quantities.

4.6 MDF model definition language and syntax

The model is defined by a set of nested element
definition expressions, each enclosed in a set of
brackets. The expressions themselves are of
prefix notation i.e. an operator followed by a set of
operands. It should be noted that one, or indeed
all, of the operands can be further MDL
expressions.

The expressions defining elements take the
form shown on the right where ‘elementclass’
is the name of the class type of the element.

‘operands’ (as noted above) is optional and
can in fact be a list of element definition
expressions.

To specify the construct for an arbitrarily complex model spectra, it was helpful to set out a Model Definition Language (MDL).

FFS provides a system for handling complex
coupling between parameters, specified by the
model definition. In the coupling expression form,
shown on the right,‘parname’ is the name of the
parameter being coupled and ‘elementname’ is
the name of the element to which it belongs.

4.7 The model optimisation

It is possible that some models will possess combinations of elements that
can be readily reduced to a more optimum representation.

This is the case if, for example, there is a well known analytic solution for
an operator element acting on some other element, that provides more
efficient function evaluation.

The possibility of using analytic expressions for the parameter partial
derivatives is an important such case.

A simple illustration is below.

The model optimisation, by the the ffs_ simplify routine, in practice, uses a
reference table of rules defining more efficient representations for a set of
operator element-element pairs. The whole scheme is shown on the right.

4.8 FFS_FIT

FFS is a computational framework for provision of complex spectral model specification. The spectral fitting process
itself, however, is handled by a separate module to allow for flexibility for the user. Despite this design decision, it
should be noted that FFS was originally intended to be used in conjunction with the readily available fitting program
MPFIT. This package has, at its core, the Levenberg-Marquardt algorithm detailed above. MPFIT provides some
additional machinery around the core algorithm such as setting some parameters in the model to be fixed, or
imposing boundary constraints, basic parameter coupling and suggested step sizes (for numerical partial
derivatives). These facilities influenced the parameter structure for FFS, thus it remains compatible with the routine,
but FFS retains control of these properties as they are considered to be part of the model definition, rather than the
concern of a fitting program.

The fitting algorithm implemented for use in this work, is a version of that developed by Marquardt. The method has
become one of the most widely used in optimisation problems. The advantage of this algorithm is that it manages to
smoothly vary between two methods of minimising a function mentioned above: steepest descent and the Gauss-
Newton method. The two methods complement each other in that each is effective under conditions that are less
favourable for the other.

Non-linear least squares fitting:

A custom fitting code:

It is often the case that an experiment will record multiple spectra—usually a series of spectra in time, space or both. It
is desirable to fit all of the spectra in a systematic, automated scheme to identify trends in the derived parameters
across the series. To this end, scripts exist as part of FFS which cycle through the frames of spectra performing fits
using a single model definition.

Batch fitting:

4.7 An example

C I (2s22p3s 3P – 2s22p3p 3P) emission at 909 nm as recorded by
KT3C at JET, pulse #78658 (R = 2:749 m, t = 61:3 s). The fitted
model is shown in red, with the fit residual shown in the lower plot

5.1 Conclusions

The outcome of this work is the provision of two useful tools for analysis of atomic and molecular spectra.
Firstly, the ADAS Feature Generator (AFG) facilitates ease of access to a range of special feature models
within ADAS.

Secondly, the Framework for Feature Synthesis (FFS) package accomplishes its task by providing a highly flexible,
modular model representation that can draw upon ADAS provided special features (via AFG) in addition to a basis set
of familiar mathematical functions.

The FFS implementation goes beyond that offered by existing packages by allowing for specification of arbitrarily
complex functional dependence between parameters via the model definition language.

A model ‘simplification’ module optimises any inefficient representations using the derived analytic solutions to form a
new model, yet connects the new parameter set, via the coupling system, to the originally specified set.

The system has proved effective across the range of studies considered and the design of the framework remains
flexible enough such that it can be used in support of analysis of any fusion or astrophysical spectra — a new special
feature model is easily integrated by means of a lightweight AFG wrapper to an external modelling code.

The system is not yet complete. A number of areas are receiving further attention and the scope of models is being
increased.

	Module 4 ��Modelling and analysing special spectral features – A unified approach��Lecture viewgraphs �
	Contents
	1.1 Preliminaries
	1.2 Preliminaries
	1.3 Preliminaries
	2.1 Accessing ADAS special features - AFG
	2.2 Class diagram for AFG
	2.3 AFG description structures, accessed through the ‘getdesc’ method
	3.1 ADAS605 – input and processing screens
	3.2 ADAS605 – output screen
	3.3 ADAS605 code listing output
	4.1 Setting up spectral fitting with complex features
	4.3 Class diagram for FFS
	4.4 FFS
	4.5 FFS element class
	4.6 MDF model definition language and syntax
	4.7 The model optimisation
	4.8 FFS_FIT
	4.7 An example
	Slide Number 20

