

Grant: 224607

Hugh Summers, Martin O'Mullane, Francisco Guzman and Luis Menchero

Review 1

1 July 2010

Workpackages: 26-5-1 Category: PU

Review 1

Hugh Summers, Martin O'Mullane, Francisco Guzman and Luis Menchero

Department of Physics, University of Strathclyde, Glasgow, UK

Abstract: Review of reporting period: months 1-18

1	Ove	rview	3
	1.1	Staffing	3
	1.2	Finances	4
	1.3	Forward planning	4
2	Avai	ilable reports	7
	2.1	Reports: SCIENCE1, SCIENCE2, SCIENCE3	9
	2.2	Report: OPEN1	15
	2.3	Reports: SETUP1, SETUP2	17
	2.4	Report: DISSEM1	21
	2.5	Reports in development: PUBL1, PUBL2, PUBL3, PUBL4	23
A	ADA	AS-EU Advertisement	38
В	ADA	AS-EU website: www.adas-fusion.eu	41
C	OPE	EN-ADAS website: www.onen.adas.ac.uk	43

Preface

The review document is one of series of three, deliverable under the ADAS-EU project. The review includes titles and contents pages of the collection of reports scheduled for completion during the reporting period.

Chapter 1

Overview

The objectives of ADAS-EU in its first eighteen months have largely been met. Set-up of the project experienced some delays, particularly in recruitment, but sub-contract design and placement moved ahead of schedule. The duration of sub-contracts was in many cases increased from the originally intended 12 months to 18 months. From discussions, it was evidently difficult, particularly with sub-contracts involving experimental measurements on external facilities, to achieve completion in 12 months. This is not a time critical part of ADAS-EU delivery at this stage and 18 months was accepted.

Substantial effort has been made to make information about ADAS-EU accessible in the public domain. Posters describing ADAS-EU and its commitments to supporting fusion in Europe were prepared and widely circulated (see Appendix A. Dr. Whiteford created a web site (http://www.adas-fusion.eu) to propagate news, announcements and access to technical information about ADAS-EU. Its front page is shown in Appendix B. He followed the pattern of the existing ADAS web site (http://www.adas.ac.uk)

Dissemination in the first period has progressed very well. The level of interest in the ADAS-EU course exceeded expectations and the attitudes of participants to shared learning, mutual support and future collaborations were exceptionally good. There have been several cross-visits between participants and initiated collaborative work stemming directly from the ADAS-EU course in the past nine months.

The OPEN-ADAS web site, which is the pathway for public domaain release of data from ADAS-EU has been operating without problem since the beginning of the project. There has been a very large number of users and downloads (see section 2.2). The website is http://open.adas.ac.uk. Its front page is shown in Appendix C.

The detailed reports due at this time have been assembled and are available as separate documents. The titles and front pages are included in Chapter 2 for information. Attention is drawn to the PUBL series of reports. These contain the full scientific and computational application details of the main themes of ADAS-EU and are due for completion and publication towards the end of the ADAS-EU project. They are works 'in progress'. As a scientific work package item and its background theory are completed, the appropriate chapters and sections are written up in the relevant PUBL. They are available to the scrutinisers and the Governance Committee of ADAS-EU but should not be released further at this stage. Reference is made in the SCIENCE reports to sections of the PUBL documents which may be helpful or clarifying.

1.1 Staffing

The ADAS-EU Director (Professor Hugh Summers) was appointed at 20% FTE from 1 Jan. 2009. The ADAS-EU managers (Dr. Allan Whiteford and Dr. Martin O'Mullane) were appointed at 40% FTE and 10% FTE respectively from 1 Jan. 2009.

The first ADAS-EU post-doctoral research associate (Dr. Francisco Guzman) was appointed at 100% FTE from 1 Jul. 2009. Dr. Guzman is based at FZ Juelich until 31 Dec. 2010. The second ADAS-EU post-doctoral research associate

(Dr. Luis Menchero) was appointed at 100% FTE from 1 Feb. 2010. Dr. Menchero is based at IPP Garching.

The ADAS-EU Special Advisor (Professor Ratko Janev) was appointed at 10% from 1 Jun. 2010.

Adminstrative, employment and payroll issues concerning UK University staff placement full-time in Europe, subject to local tax and insurance regimes, proved complex and led to some delay in initial post advertisement and recruitment. It was sought to advertise and recruit for both posts at the same time. Dr. Guzman was successfully employed, but the second post was not filled. Readvertisement and recruitment for the second post took place in Autumn 2009 and Dr. Menchero was successfully appointed.

These delays caused a loss of 10 months of ADAS-EU postdoctoral scientific input. As a compensating step, Dr. Adam Foster, a fusion plasma/atomic physics specialist, and former PhD student of Strathclyde University, supervised by Professor Summers, was employed on a temporary post from 1 Mar -30 Jun 2009. Dr. Foster was at that time preparing to take up a position at Harvard-Smithsonian in the USA, which he did in Jul 2009. Dr. Foster's employment enabled accelerated progress on the ADAS-EU heavy element theme 1, as detailed in the SCIENCE and PUBL reports (see sections 2.3 and 2.4).

Professor Janev's 10% FTE was scheduled to be fulfilled each year in a single one month block, based at FZ Juelich and designed to overlap with the FZ Julich placement of Dr. Guzman. The delay in start-up of Dr. Guzman made it expedient to delay the start of Professor Janev's appointment until 2010. This was done. Professor Janev fulfilled his 5% FTE for 2010 from 1 - 30 Jun. 2010 at FZ Juelich and successfully collaborated with Dr. Guzman there.

This still leaves a gap of 7 months of postdoctoral scientific input to ADAS-EU. In light of the very successful contribution to ADAS-EU by the short term appointment of Dr. Foster, it is planned to recover at least part of the 7 month gap, from Autumn 2010, by temporary employment of other newly-completed and atomic physics-trained PhDs in transit to other posts.

Unexpectedly, Dr. Allan Whiteford decided to leave Strathclyde University for the commercial sector. He resigned from 14 Oct. 2009 leaving a 40% FTE gap in management and scientific leadership of ADAS-EU. Professor Summers increased his assigned time to ADAS-EU from 20% to 40% from 1 Nov. 2009 and Dr. O'Mullane increased his assigned time to ADAS-EU from 10% to 30% from 1 Jan. 2010. These are interim measures until a suitable replacement for Dr. Whiteford is obtained.

It is noted that Dr. Whiteford was leading the Electron Working Party coordination activity for ADAS-EU, planned as part of the atomic data uplift of ADAS-EU. This activity was scheduled to begin after the initial set-up of ADAS-EU and establishment of the baseline data and models. As described in the OPEN, SETUP and SCIENCE reports (see chapter 2), ADAS-EU is nearly at the time point to shift emphasis to uplift. It is planned to appoint Professor Nigel Badnell at 20% FTE to mastermind this, with Professor Summers relinquishing a corresponding amount of time. It is intended that this be put in place from late Summer 2010. It is noted that Professor Badnell, based at the Department of Physics, University of Strathclyde, is one of the most outstanding electron collisional and computational theorist in the world today.

1.2 Finances

1.3 Forward planning

In broad terms, the ADAS-EU project can continue with its work packages in the originally specified timeframes. However, in a project of this length, which is designed to be strongly supportive and interactive with the fusion programme in Europe, there is some shifting of priorities and points of greatest interest and impact at any given time.

For these reasons, it is intended to bring the complete heavy species theme infrastructural concepts to completion soon. Our developments, such as superstages, have been taken up strongly by the plasma modellers and this material bears on other projects in Europe such as the Integrated Tokamak Modelling project. Also the beam emission theme items should be moved forward. A number of advanced developments were scheduled to be implemented in ADAS-EU. Our background academic research development of these is now well on and it is desirable to move them into ADAS-EU exploitation somewhat in advance of the original plans. It is noted that ADAS data on neutral beams enter codes such

as the Princeton TRANSP/NUBEAM package and so have worldwide use.

Also, there is an opportunity to bring forward the special feature theme. Our background academic research in this aspect is progressing quickly. Some parts, such as the pedagogical AFG, have already been moved into application in ADAS and it seems desirable to move the whole package into ADAS-EU exploitation while the work is fresh.

The NEW-CHEAP plan must be put back. The departure of DR. Whiteford, removes the expected lead developer from the ADAS-EU team. But also, among the fusion laboratory based diagnostic spectroscopy personnel, there is a lack of clarity of the precise expectations and wishes from this development. It is preferable to conserve some of the seven month deficit of postdoctoral scientific input explained in the overview above for this purpose when matters clarify.

The lifting of the database is the principal task for the future and it is the attention to this which will make best use of the supporting ADAS-EU sub-contracts as they come to fruition. Our plan is to exploit the strengths of the ADAS-EU post doctoral staff in ion-atom collisions. On the electron collision side, Professor Badnell's joining of the project opens up the possibility of very substantial coordinated effort in this area, which it is in ADAS-EU's interests to promote. ADAS-EU does rely on the effectiveness of the background academic research of our academic staff, outwith their time allocation to ADAS-EU. It is our intention to see if commitment to a coordinated theoretical/computational electron collision plan can be realised over the next months, which will, to a large degree, unify European capability in this area for fusion. It is expected that time on European supercomputers will be necessary for some of the most difficult targetted systems.

-

Chapter 2

Available reports

- SCIENCE1, SCIENCE2, SCIENCE3
- OPEN1
- SETUP1, SETUP2
- DISSEM1

-

2.1 Reports: SCIENCE1, SCIENCE2, SCIENCE3

1	Ove	rview and milestone SCI21	3		
2	Work package reports				
	2.1	Work package 1-1	5		
	2.2	Work package 6-1 [+6-4, 6-5], milestone SCI21	5		
	2.3	Work package 7-1	5		
	2.4	Work package 26-1-1	6		
A	ADA	S-EU Theme 1 supplementary material for the report	7		
В	CVS	FIT	33		
C	ADA	S-EU Theme 2 supplementary material for the report	39		

ADAS-EU R(10)SC02

Grant: 224607

Hugh Summers, Martin O'Mullane, Francisco Guzman and Luis Menchero

Scientific progress report 2

30 June 2010

Workpackages: 1-2, 2-1, 2-3, 6-4, 7-2, 7-3, 17-1, 26-1-2 Category: PP

1	Overview and milestones SC122, SC123					
2	Work package reports					
	2.1	Work package 1-2	5			
	2.2	Work package 2-1	5			
	2.3	Work package 2-3	5			
	2.4	Work package 6-4	6			
	2.5	Work package 7-2 and 7-3	6			
	2.6	Work package 17-1	6			
	2.7	Work package 26-1-2	6			
A	ADA	AS-EU Theme 3 supplementary material for the report	7			
В	ADA	AS-EU Theme 1 supplementary material for the report	13			
C	Emi	ssion from tungsten	19			
	C .1	Emission Estimates	19			
	C.2	Application to ITER and conclusions	19			

ADAS-EU R(10)SC03

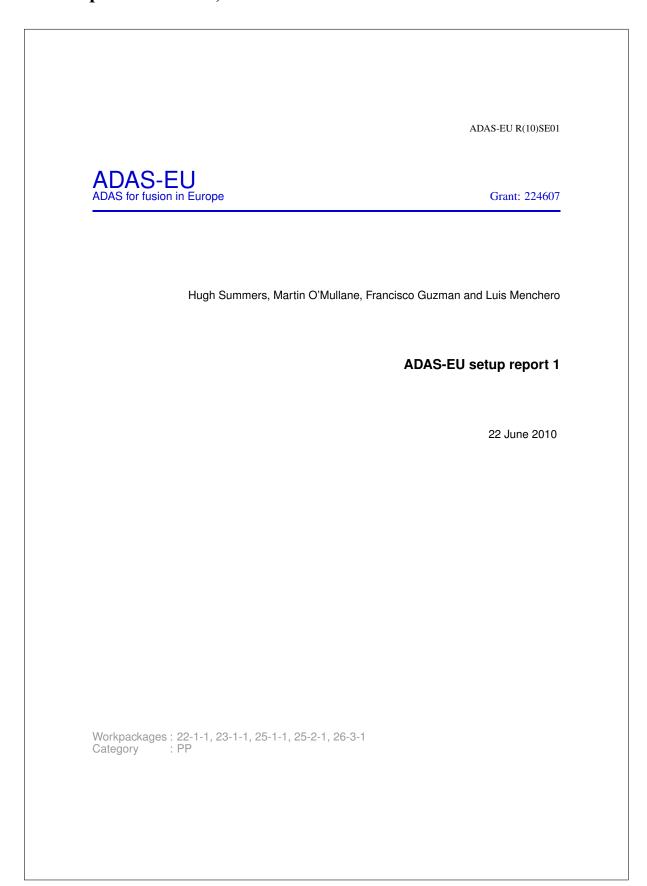
Grant: 224607

Hugh Summers, Martin O'Mullane, Francisco Guzman and Luis Menchero

Scientific progress report 3

7 July 2010

 $\label{eq:workpackages: 1-3, 2-2, 3-1, 3-2, 3-4, 6-2, 6-3, 13-1, 16-2, 18-1, 18-2, 18-3, 19-1, 22-2-1, 23-2-1, 22-2-2, Category \qquad : PP$


1	Over	view and innestones SC111, SC124, SC151, SC152, S151 [+ SC112, SC113, SC141, SC143, SC144]	3
2	Worl	k package reports	5
	2.1	Work package 1-3	5
	2.2	Work package 2-2	5
	2.3	Work package 3-1	5
	2.4	Work package 3-2	5
	2.5	Work package 3-4	5
	2.6	Work package 6-2, 6.3	6
	2.7	Work package 13-1	6
	2.8	Work package 16-2	6
	2.9	Work package 18-1, 18-2, 18-3, 19-1	6
	2.10	Work package 22-2-1, 22-2-2	6
	2.11	Work package 23-2-1, 23-2-2	6
	2.12	Work package 26-1-3	6
	2.13	Supplementary work package completion	6
	2.14	Work package S2	7
	2.15	Work package S3	7
	2.16	Work package S5	7
	2.17	Work package S8	7
A	ADA	S-EU Theme 1 supplementary material for the report	9
В	ADA	S-EU Theme 4 supplementary material for the report	15

2.2 Report: OPEN1

ADAS-EU R(10)OPC	
Grant: 22460'	ADAS-EU DAS for fusion in Europe
d, Francisco Guzman and Luis Mencherd	Hugh Summers, Martin O'Mullane, Allan Whitefor
OPEN-ADAS report	
24 June 2010	
	/orkpackages : 26-2-1 ategory : PU
	Vorkpackages . 20-2-1

1	Overview	3
2	Work package reports	5
	2.1 Work package 26-2-1	5
A	OPEN-ADAS documents and updates	7

2.3 Reports: SETUP1, SETUP2

1	Overview and milestone STP1			3
2	Work package reports			
	2.1	Work	package 25-1-1	5
	2.2	Work	packages 23-1-1 and 22-1-1	6
	2.3	Work	packages 22-2-1 and 23-2-1	6
	2.4	Work	package 25-2-1: Sub-contract technical specification	6
		2.4.1	Atomic structure and electron data for heavy element ions	6
		2.4.2	Positive ion impact data for fusion applications	6
		2.4.3	Electron impact cross-section data for fusion applications	6
		2.4.4	Charge exchange and ion impact data for fusion plasma spectroscopy	7
	2.5	Work	package 26-3-1	7
A	ADA	AS-EU 1	postdoctoral fellowship advertisements	9
В	Trav	vel repo	rts linked to Dr Guzman induction	27
C	Cub	contro	oting set up visit reports and sub-contracts	21

ADAS-EU R(10)SE02

Grant: 224607

Hugh Summers, Martin O'Mullane, Francisco Guzman and Luis Menchero

ADAS-EU setup report 2

22 June 2010

Workpackages: 22-1-2, 22-2-1, 23-1-2, 23-2-1, 25-1-2, 25-2-2, 26-3-2 Category: PP

1	Ove	rview		3
2	Woı	rk packa	oge reports	5
	2.1	Work p	oackage 25-1-2	5
	2.2	Work j	package 23-1-2 and 22-1-2	5
	2.3	Work j	package 22-2-1 and 23-2-1	6
	2.4	Work j	package 25-2-2: Sub-contract technical specification	6
		2.4.1	Atomic data and models for neutral beam diagnostics	6
		2.4.2	Atomic structure and ionisation for heavy element ions	6
		2.4.3	R-matrix cross-sections for low ionisation stages of complex atoms and ions	6
	2.5	Work j	package 26-3-2	7
A	AD	AS-EU p	ostdoctoral fellowship advertisement	9
В	Tra	vel repoi	rts and meetings linked to Dr. Menchero induction and Dr. Guzman annual review	27
C	Sub	contrac	ting set up visit reports and sub-contracts	70

2.4 Report: DISSEM1

1	1 Overview and milestone DSM1		3				
2	Work package reports						
	2.1 Work packages 20-1-1 and 20-2-1		4				
	2.2 Work package 21-1-1 and 21-2-1		4				
	2.3 Work package 26-4-1		5				
A	A ADAS-EU course 2009 announcements and agenda		7				
В	B ADAS-EU course 2009 participants	1	3				
C	C ADAS-EU course 2009 lecture, task, tutorial and exercise notes	1	7				
D	D. ADAS-EII external visits	58	13				

2.5 Reports in development: PUBL1, PUBL2, PUBL3, PUBL4

1	Intr	roduction	4
2	Coll	lision-radiative modelling environments	6
	2.1	The n-shell redistributive/cascade model	9
		2.1.1 Effective emission coefficients	10
		2.1.2 Average emission measure and spectral analysis	10
	2.2	Extending the model scope	10
		2.2.1 The bundle-n model	10
		2.2.2 The bundle-nl model	11
	2.3	Condensation, projection and inversion for advanced charge exchange modelling	11
3	Exte	ending the fundamental charge exchange cross-section calculations	12
	3.1	Comparison of methods	12
	3.2	State selective ion impact cross-sections	12
	3.3	Lifting the ADAS fundamental charge exchange cross-section database	12
4	A u	niversal baseline of fundamental charge exchange data	13
	4.1	The scaled total cross-section, $ar{\sigma}_{tot}(\epsilon)$	14
	4.2	The scaled n-shell resolved cross-section, $ar{\sigma}_{ u}(\epsilon)$	17
	4.3	The scaled nl-shell resolved cross-section, $ar{\sigma}_{\nu l}(\epsilon)$	18
	4.4	The code adas315 and formats adf49, adf01	18
	4.5	The code adas316 and formats adf12, adf25 and adf26	19
5	ADA	AS codes and data formats for level 1 and level 2 modelling	29
A	ADA	AS data formats	30
	A.1	adf00: configurations and ionisation potentials	30
	A.2	adf01: bundle-n and bundle-nl charge exchange cross-sections	33

ADAS-EU R(10)PU01

В	IDL procedures	38
C	FORTRAN subroutines	39
D	Shell scripts	40

-

ADAS-EU R(10)PU02

Grant: 224607

Christopher Nicholas, Hugh Summers and Martin O'Mullane

PUBL2: Special features and spectral analysis for fusion plasmas

22 Jun 2010

Workpackages: 26-6-1 Category: DRAFT

1	Intr	oduction	1	3
	1.1	Existing Analysis Systems		
		1.1.1	Package for Interactive Analysis of Line Emission (PINTofALE)	6
		1.1.2	Charge Exchange Spectroscopy Fitting (CXSFIT)	6
		1.1.3	CHIANTI Atomic Database	6
		1.1.4	Atomic Data Analysis Structure (ADAS)	6
		1.1.5	Object-oriented modelling for numerical fitting	7
	1.2	Improv	ing on Exisiting Software	7
	1.3	Temperature and Density Measurement in the Divertor		
		1.3.1	Langmuir Probes	8
		1.3.2	Balmer Series	8
2	Spec	cial Feat	ure Modelling for Nuclear Fusion	9
	2.1	Introdu	ction	9
		Populat	tion Modelling	9
		2.2.1	The Orientation Problem	10
		2.2.2	Thermal Emission and Resolution	13
	2.3	Helium	-like soft x-ray resonance and satellite lines	14
		2.3.1	The population calculations	16
		2.3.2	Electron-impact rate coefficients	18
		2.3.3	Computational details	21
	2.4	The bac	ckground continuum	21
2.5 Primary special features for consideration			y special features for consideration	22
		2.5.1	Heavy Species Envelope Emission	22
		2.5.2	Motional Stark Multiplet Features of H and D Beams	22
		2.5.3	Stark Broadening and Series Limits: Balmer and Paschen series	24
		2.5.4	Helium-like Soft X-ray Resonance and Satellite Line Regions	25
	2.6	Charge	Exchange Spectra (Carbon, Helium/Beryllium ?)	26
3	ADA	AS Speci	al Feature Application Programming Interface	27
	3.1	ADAS	Feature Generator (AFG)	27

	3.2	ADAS605 — GUI to AFG	33		
4	Com	abinations of functions for Spectral Fitting	39		
	4.1	Introduction	40		
	4.2 Functions considered				
		4.2.1 Un-broadened line	40		
		4.2.2 Gaussian	40		
		4.2.3 Doppler	41		
		4.2.4 Lorentzian	42		
		4.2.5 Voigt	43		
		4.2.6 Linear Background	46		
		4.2.7 Addition operator	46		
		4.2.8 Scaling (multiplication) operator	47		
		4.2.9 Shift operator	47		
		4.2.10 AFG	47		
	4.3	Practical Examples	48		
		4.3.1 Convolution of two normalized, un-shifted Gaussian functions	48		
		4.3.2 Convolution of N-Gaussian profile with Gaussian	49		
	4.4	Framework for Feature Synthesis	50		
	4.5	Model Definition Language	51		
	4.6	4.6 Parameter Coupling			
	4.7	P.7 Optimisation of the Model			
	4.8	Typical Examples for Fitting	62		
	4.9	Non-linear Least Squares Fitting			
	4.10	0 Validation of Results			
	4.11	Analytic / Numerical fitting Speed Comparison	64		
5	Expe	erimental Analysis	66		
	5.1	Initial Validation	66		
	5.2	An Illustration from SOHO-CDS	68		
	5.3	Divertor Detachment Experiment at JET	72		
	5.4	Zeeman Split Feature in JET Divertor	77		
	5.5	Diatomic Molecular Spectra in the JET Divertor	79		
_	Con	clusions	80		
6	Cone	ctusions	δU		
A	Mat	hematical Notes	82		
	A.1	Convolution; definition and basic properties	82		
	A.2	Area of convolved functions	82		
	A.3	Raw moments of convolved functions	82		

-

ADAS-EU ADAS for fusion in Europe	Grant: 22460
	Hugh Summers, Adam Foster, Stuart Loch, Martin O'Mullane and Allan Whiteford
	Heavy species in fusion plasma modelling and spectral analysis
	25 May 2010
Workpackages : Category :	

1 Introduction			4
	1.1	Atomic nomenclatures	4
	1.2	Population structure	6
		1.2.1 Some algebra	6
	1.3	Emissivities	9
		1.3.1 Some more algebra	10
	1.4	Primary ADAS data for heavy species	12
2	Con	nplex atom calculations	14
	2.1	Promotional rules	14
	2.2	Structure, populations and emissivities	18
	2.3	Automatic running and naming conventions	22
	2.4	Optimised sizing for computer systems	30
3	Ioni	sation state of heavy elements	37
	3.1	Ionisation	38
		3.1.1 Parametric forms	38
		3.1.2 Configuration average distorted wave ionisation	42
	3.2	Recombination	46
		3.2.1 Radiative recombination	47
		3.2.2 Dielectronic recombination	49
	3.3	Finite density heavy species collisional-radiative coefficients	53
4	Supe	erstages and flexible partitioning	55
	4.1	The natural partition and spectroscopy	59
	4.2 Superstage condensation and plasma transport models		62

5	Lifting the baseline		
A	ADAS data formats	71	
	A.1 adf00: configurations and ionisation potentials	71	
	A.2 adf03: recombination, ionisation and power parameters	74	
	A.3 adf04: resolved specific ion data collections	81	
	A.4 adf07: direct resolved electron impact ionis. data collections	85	
	A.5 adf08: direct resolved radiative recombination coefficients	89	
	A.6 adf09: state selective dielectronic recombination coefficients	93	
	A.7 adf11: iso-nuclear master files	104	
	A.8 adf15: photon emissivity coefficients	105	
	A.9 adf23: state selective electron impact ionisation coefficients	106	
	A.10 adf32: drivers for ADAS802 ionisation calculations	112	
	A.11 adf34: drivers for ADAS801 structure calculations	113	
	A.12 <i>adf40</i> : envelope feature photon emissivity coefficients	116	
	A.13 adf42: driver data sets for ADAS810 emissivity calculations	120	
	A.14 adf46: driver data sets for BBGP for dielectronic recombination	121	
	A.15 adf48: state selective radiative recombination coefficients	127	
	A.16 adf54: general promotional rule sets	128	
	A.17 adf55: general dielectronic recombination promotional rules	132	
	A.18 <i>adf</i> 56: general ionisation promotional rules	136	
В	IDL procedures	140	
C	FORTRAN subroutines	183	
D	Shell scripts	231	

-

ADAS-EU R(10)PU04

Grant: 224607

Stuart Henderson and Hugh Summers

PUBL4: Neutral Beam Emission: The Motional Stark Effect

26 May 2010

Workpackages: 26-6-4 Category: DRAFT

1	Introduction			
	1.1 Neutral Beam Characteristics		4	
		1.1.1 JET Positive Ion Neutral Injection	5	
		1.1.2 ITER Negative Ion Neutral Injection	6	
	1.2	Beam Emission and Spectroscopy	6	
	1.3	Motional Stark Effect	9	
	1.4	Diagnostics	10	
2	Field	d Perturbation	12	
	2.1	Paschen-Back Effect	13	
	2.2	Zeeman Effect	14	
	2.3	Linear Stark Effect	14	
	2.4	Polarisation	17	
	2.5	Motional Stark Effect	18	
3	Field	d Ionisation	28	
	3.1	Classical Ionisation Limit	28	
	3.2	Potential Barrier Penetration	29	
	3.3	Below Potential Barrier	31	
	3.4	Near Potential Barrier	32	
	3.5	Implementing Code	33	
4	Pop	Population Modelling		
	4.1	Radiative Decay Rates	40	
	4.2	Cascade Effects	41	
	4.3	N-Shell Expansion	42	
	44	Results	42	

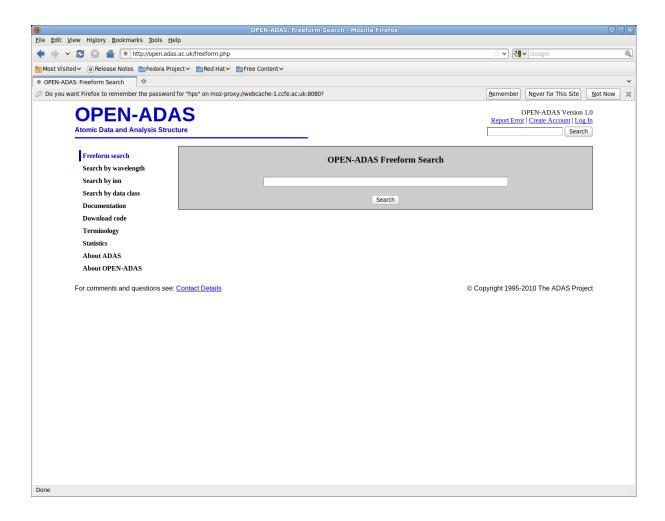
	4.5	Impler	menting Code	42	
5 Asymmetric Cross Sections				49	
	5.1	Isotrop	pic Atom	49	
		5.1.1	Transition Probability	50	
		5.1.2	Neutral Atoms	51	
		5.1.3	Charged Atoms	52	
	5.2	Asymr	metric Atoms	53	
		5.2.1	Transition Probability	53	
		5.2.2	Coordinate Transformation	54	
		5.2.3	Cross Sections	55	
	5.3	Impler	nentation	56	
		5.3.1	Transition Probability	56	
		5.3.2	Differential Cross Sections	57	
		5.3.3	Strong Coupling	58	
		5.3.4	Total Cross Sections	59	
6	Sum	marv		74	
v	6.1	Summary 6.1 Improvements			
	6.2		Work	74 75	
	6.3 Conclusions				
	0.5	Concre	isions	75	
A	Cod	ing		78	
	A .1	Adas3	05 Expansion	78	
	A.2	fldizn		79	
	A.3	getpn		80	
	A.4	gamaf	1	80	
	A.5	gamaf	2	81	
	A.6	casmat	f	81	
	A.7	V k		81	
	A.8	Vk1.		82	
	A.9	irreg		82	

Appendix A

ADAS-EU Advertisement

-

Appendix B


ADAS-EU website: www.adas-fusion.eu

-

Appendix C

OPEN-ADAS website: www.open.adas.ac.uk

