ADAS412: Equilibrium ionisation - prepare G(Te) function tables

The code allows the full calculation of solar astrophysical G(Te) functions. It does this by carrying out an excited population calculation from an ADF04 dataset in the manner of ADAS205, generating an ionisation balance from ADF11 datasets in the manner of ADAS405 and finally assembling the G(Te) function.

Background theory:

The code is the interactive implementation of the program used to create the main adf20 datasets. The new code can create output data sets fully formatted to the adf20 specification. Probable special uses of the code will be to check the sensitivity of G(Te) functions to small alterations in underlying collisional rates from adf04 datasets or to focus on a restricted number of G(Te) functions. Thus we have allowed restriction of the number of G(Te) functions created by wavelength interval or by initial and final level. The theory of the G(Te) functions is given in the 'cds_manual' (/.../adas/docs/cds-manual/...).One of the most widely used methods available for the interpretation of astronomical spectral intensities is the emission measure technique. This method is less familar in spectroscopic studies of fusion plasma. However it and variants designed to determine impurity concentration, impurity variation in time and impurity influx are applicable in fusion.

The intensity of a spectral line from a column of optically thin plasma of crosssectional area A and due to a transition from upper level j to lower level k may be written as

$$I_{j \to k} = \frac{1}{4\pi \mathbf{A}} \iiint A_{j \to k} N_j dz dy dx \qquad 5.12.1$$

where N_j denotes the population density of ions in the upper state j, $A_{j \to k}$ is the radiative transition probability for the transition and the integral is taken over the volume of the plasma viewed.

The excited population may be expressed in terms of the ground and metastable populations of the ionisation stage to which it belongs and to those of the adjacent higher ionisation stage by a quasi-equilibrium collisional radiative calculation as

$$N_{j} = \sum_{\sigma=1}^{M_{z}} \mathbf{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \sum_{\nu'=1}^{M_{z+1}} \mathbf{F}_{j\nu'}^{(rec)} N_{e} N_{\nu'}^{+}$$
 5.12.2

Usually contributions to the population of the excited state by excitation from the metastables of its own ionisation stage only need to be considered so that

$$N_j = \sum_{\sigma=1}^{M_z} \mathbb{F}_{j\sigma}^{(exc)} N_e N_\sigma$$
5.12.3

In differential emission measure analysis, the assumption of ionisation balance is normally made. Although a time dependent ionisation could be used, the method would be specific to a particular model for the dynamic behaviour of the plasma and the universality of the emission measure technique would be lost. Thus it is convenient to write.

$$N_{\sigma} \equiv N_{\sigma}^{(z)} = \frac{N_{\sigma}^{(z)}}{N_{tot}} \frac{N_{tot}}{N_H} \frac{N_H}{N_e} N_e$$
 5.12.4

where the ratio $N_{\sigma}^{(z)} / N_{tot}$ is evaluated in equilibrium at the local temperature and density. For the solar plasma, the generally accepted assumption is that the abundance of the element N_{tot} / N_H does not vary through the depth of the atmosphere. Then gathering terms

$$A_{j \to k} N_{j} = \frac{N_{tot}}{N_{H}} N_{e}^{2} G(T_{e}, N_{e})$$
 5.12.5

where

$$G_{j \to k}(T_e, N_e) = A_{j \to k} \frac{N_H}{N_e} \sum_{\sigma=1}^{M_z} \mathbb{F}_{j\sigma}^{(exc)} \frac{N_{\sigma}^{(z)}}{N_{tot}}$$
 5.12.6

Then the spectral intensity may be written as

$$I_{j \to k} = \frac{1}{4\pi \mathbf{A}} \frac{N_{tot}}{N_H} \iiint G_{j \to k} (T_e, N_e) N_e^2 dz dy dx \qquad 5.12.7$$

It is convenient to change the variable of the integral to electron temperature. However the atomic coefficient depends on both electron temperature and electron density so it is necessary to make some assumption about the relation between them. A common assumption is that the plasma pressure is constant over the relatively small range of temperature where the $G(T_e, N_e)$ function has significant values. In any event a model assumption is made even though the $G(T_e)$ function is usually written as function of temperature alone. Also introduce the concept of surfaces of constant temperature of which there may be more than one in the viewed volume. The intensity then may be rewritten as

$$I_{j \to k} = \frac{1}{4\pi \mathbf{A}} \frac{N_{tot}}{N_H} \int_{T_1}^{T_2} G_{j \to k} (T_e, N_e) \sum_l \int_{S_l(T_e)} |\nabla T_e|_l^{-1} N_e^2 dS_l dT_e$$
5.12.8

The limits of the integral T_1 and T_1 are the minimum and maximum electron temperatures in the part of the atmosphere contributing to the spectrum. Introduce the differential emission measure, $\phi(T_e)$, defined by

$$\phi(T_e) = \frac{1}{\mathbf{A}} \sum_{l} \int_{S_l(T_e)} |\nabla T_e|_l^{-1} N_e^2 dS_l$$
 5.12.9

where the sum is taken over all l of the isothermal surfaces $S_l(T_e)$ and $|\nabla T_e|_l$ is the modulus of the temperature gradient perpendicular to the surface. By this definition $\phi(T_e)$ is the average value for the differential emission measure over the area viewed by the spectrometer. It is noted that $\phi(T_e)$ is the part of the integral it is sought to extract since it is the part which gives infromation about the structure of the atmosphere. The above analysis leads to the following expression for the spectral intensity

$$I_{j \to k} = \frac{1}{4\pi} \frac{N_{tot}}{N_H} \int_{T_1}^{T_2} G_{j \to k} (T_e, N_e) \phi(T_e) dT_e$$
 5.12.10

The program calculates $G(T_e)$ data sets.

Program steps:

These are summarised in figure 5.12.

Interactive parameter comments:

The **file selection window** has the appearance shown below. It is composed of two sub-windows. The upper sub-window is a conventional file selection window used to select the specific ion file for the excited population part of the calculation, while the lower one allows an ionisation balance to be selected.

- 1. Data root shows the full pathway to the appropriate data subdirectories of type *adf04*. Click the *Central Data* button to insert the default central ADAS pathway to the correct data type. Click the *User Data* button to insert the pathway to your own data. The Data root can be edited directly.
- 2. Available sub-directories are shown in the large file display window. Click on a name to select it. The selected name appears in the smaller selection window above the file display window. Then its sub-directories in turn are displayed in the file display window. Ultimately the individual datafiles are presented for selection.
- 3. Select the choice of source for the ionisation balance calculation. The appropriate data class is *adf11*.
- 4. The particular ionisation and recombination data is selected by *Data Year* and then by *Element* at e). Enter the two digit year number. Note that the

G(Te) code uses ionisation and recombination data unresolved by metastable. Thus it looks for sub-directories acd < year > and scd < year >, not acd < year > r and scd < year > r. Most of such data are in years '74', '85' and '89'.

5. Enter the element symbol at *Element*. The code will check that the same element is being used for the ionisation balance as for the excited population calculation.

The **processing options window** has the appearance shown below

- 1. Information on the ionisation and recombination data in use is shown.
- 2. Enter the model data for the calculation. The code will allow calculation of the G(Te) functions at either a fixed electron pressure or a fixed electron density.
- 3. Click the *Default Data* button to begin. A pop-up widget appears. Select either *Density* or *Pressure*, enter a value in the editable box and press Return. Default model values of the selected type appear in the table. The default temperature values come from the selected ionisation and recombination data sets. Note that the ratio of hydrogen to electron number densities is also inserted. This is required from the definition of the astrophysical type of G(Te) function. Standard solar atmosphere model data is used.
- 4. The model data is editable. Click on the *Edit Table* button to activate Table Editor. Note that the whole table becomes editable. It is the user's responsibility to modify the last column of $N_{\rm H}/N_{\rm e}$ values according to changes in temperature. It is not recomputed from the standard built in atmosphere model.
- 5. Select a density dependent or density independent (coronal balance) ionisation balance
- 6. The production of G(Te) functions can be controlled and restricted. Activate the appropriate button to enable selection by *Indices* or *Wavelengths*. The relevant part of the widget becomes activated.

- 7. For Selecting by *Indices* is as shown. The complete indexed level list from the *adf04* file is shown on the left. In the editable table on the right, enter the upper and lower level indices of transitions you wish. Note that you must click the *Edit Table* button first to start Table Editor. The table allows you to enter the precise, spectroscopic accuracy wavelength of the line if you have it available. The output tables of the G(Te) function will provide the approximate theoretical wavelength from the *adf04* level energies. These are not of spectroscopic quality unless hand prepared. Browse the comments section of the adf04 file to see if this is so. The precise wavelength you assign will appear in the output G(Te) tables along with the approximate theoretical one.
- 8. Selecting by Wavelengths activates the lower widget. You can enter a *Minimum* and *Maximum* wavelength (in Angstroms) and further restrict by the *Highest level included*, that is the highest indexed level from the adf04 file which will be considered in setting up possible lines.

The output options window appearance is shown below

1. As in the previous window, the full pathway to the file being analysed is shown for information. Also the *Browse comments* button is available.

- 2. Graphical display of the G(Te) functions is activated by the *Graphical Output* button. This will cause a graph to be displayed following completion of this window. When graphical display is active, an arbitrary title may be entered which appears on the top line of the displayed graph.
- 3. By default, graph scaling is adjusted to match the required outputs. Press the *Explicit Scaling* button to allow explicit minima and maxima for the graph axes to be inserted. Activating this button makes the minimum and maximum boxes editable.
- 4. Hard copy is activated by the *Enable Hard Copy* button. The File name box then becomes editable. If the output graphic file already exists and the *Replace* button has not been activated, a 'pop-up' window issues a warning. A choice of output graph plotting devices is given in the Device list window to the right. Clicking on the required device selects it. It appears in the selection window above the Device list window.

	ADAS412 OUTPUT OPTIONS									
	Data File Name: /afs/@cell/u/adas/adas/adf04/mglike/mglike_al97#fe14.dat									
1	Browse Comments									
	🗑 Graphical Output	Select Device								
	Graph Title	₽ost-Script								
2	Explicit Scaling X-min : X-max : X-max :	Post-Script HP-PCL HP-GL								
3	Y-min : I Y-max : I									
	🛛 Enable Hard Copy 🗌 Replace	4								
	File Name : adas412_graph.ps									
	▼ Text Output _ Replace Default File Name									
5	File Name : GOFT.PASS									
	Cancel Done									

5. The *Text Output* button activates writing to a text output file. The file name may be entered in the editable File name box when *Text Output* is on. The Default file name is *goft.pass* and it is sent to your */./adas/pass* directory.

The graph output is show below

Illustration:

Figure 5.12a shows the G(Te) function for 6-1 transition FeXIV. The GFT data set was prepared for a constant pressure model at $1 \times 10^{+13}$ K cm-3. The model includes the variation of the ratio N_H / N_e in the solar atmosphere with temperature in the G(Te) functions.

Figure 5.12a

The tabulation is given in table 5.12a. For completeness, interpolation with temperature of the model electron density, electron pressure and N_H / N_e is given in the table. Only a single G(Te) function has been calculated in this case. Selection options in the processing screen allow mass generation formatted as illustrated in this example.

```
Table 5.12a
```

```
FE+13 /NLEVELS= 40/NKNOTS= 82/NLINES=
                                         1/
 SOURCE FILES:
 IONISATION BALANCE DATA - /packages/adas/adas/adf11/.<>cd85#FE.dat
                          - /packages/adas/adas/adf04/allike/allike_al97#fe13.dat
 SPECIFIC ION FILE DATA
 PROCESSING CODE
                                                   USER IDENTIFIER
                                    DATE
     _____
                                     . . . . . . . . . .
                                                    ____
                                    26/03/99
  ADAS 412
                                                   summers
 ENERGY LEVEL INDEXING
  INDX
          CODE
                            S L IJ
          _____
                             - -
  ____
                                 - -
          3s2 3p
                            2(1) 0.5
   1
   2
          3s2 3p
                             2(1) 1.5
          3s 3p2
   3
                             4(1) 0.5
   4
          3s 3p2
                             4(1) 1.5
   5
          3s 3p2
                             4(1) 2.5
   6
          3s 3p2
                            2(2) 1.5
          3s 3p 3d
                            2(2) 2.5
   38
   39
          3s
              3p 3d
                             2(1) 0.5
   40
          3s 3p 3d
                            2(1) 1.5
 PLASMA MODEL (FINITE DENSITY IONISATION BALANCE =YES)
  -----
           NE(CM-3)
                      P(KCM-3) NH/NE
                                                     LOG(TE)
 TE(K)
                                            TIME(S)
                                                               LOG(NE)
                                                                         LOG(P)
                                     ____
                      1.00D+13
  8.91D+04
           1.12D+08
                                 8.55D-01
                                                        4.95
                                                                 8.05
                                                                          13.00
 1.00D+05
           1.00D+08
                      1.00D+13
                                 8.49D-01
                                                        5.00
                                                                 8.00
                                                                          13.00
            8.91D+07
                                 8.42D-01
8.35D-01
                                                       5.05
5.10
                                                                 7.95
7.90
 1.12D+05
                      1.00D+13
                                                                          13.00
            7.94D+07
 1.26D+05
                      1.00D+13
                                                                          13.00
                                          Chap5-12
ADAS User manual
                                                                                17 March 2003
```

1.94D+08 1.2 8.91D+08 1.1 1.00D+09 1.0	BD+04 1.00D+13 8.2 2D+04 1.00D+13 8.2 0D+04 1.00D+13 8.2		1 3D-01 27D-01 27D-01	5.95 8.95 9.00 4.0		13.00 05 13.00 00 13.00	
TABLE OF G(T)	VALUES (CM3	S-1) FOR F	'E XIV				
TRANS INDEX	1	2	3	4	5	6	7
APPROX WLENGTH	334.2	0.0	0.0	0.0	0.0	0.0	0.0
SPECTR WLENGTH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
LOG(TE(K))	T- 0	0- 0	0- 0	0- 0	0- 0	0- 0	0- 0
4.95	1.000D-99	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
5.00	4.003D-98	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
5.05	6.230D-88	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
5.10	5.875D-79	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
8.85	1.174D-47	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
8.90	3.436D-48	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
8.95	1.043D-48	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
9.00	3.227D-49	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00	0.000D+00
TRANSITION LI	ST FOR FE X	IV WVL.(A)	EXACT WVL.	(A) LOW	VER ST.	UPPER ST.	
·	 б	334 2	0 0	2(1) 0 5	2(2) 1 5	
	-	551.2	0.0	2(1	., 5.5	2(2/ 1.5	
							05 (00 (00
				summers			26/03/99

Notes: