
COLLISIONAL-RADIATIVE  MODELLING  OF  NEUTRAL

BEAM  ATTENUATION  AND EMISSION

A THESIS SUBMITTED TO

THE DEPARTMENT OF PHYSICS AND APPLIED PHYSICS

OF THE UNIVERSITY OF STRATHCLYDE

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by

Harvey Anderson

February 1999



© Copyright 1999

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as quali fied by University of Strathclyde Regulation 3.49.

Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.



Abstract

In addition to heating tokamak plasmas, neutral beam injection can also be exploited

as a quantitative diagnostic to investigate the concentration of impurities in the

plasmas via charge exchange spectroscopy. For this use, a detailed knowledge of the

beam attenuation or alternatively the neutral beam density in the plasma is required.

There are two methods which may be employed to determine the neutral beam

density.  The first approach involves modelli ng the rate at which the beam neutrals

are ionised as they traverse the plasma. The second and in principle more accurate

method, involves the direct measurement of  the intensity of the spectral li nes

emitted from the excited beam neutrals. Then with the use of atomic modelli ng the

neutral beam density can be recovered. This is the basis of beam emission

spectroscopy.

The work in this thesis, which addresses the issue of modelli ng and

measuring the neutral beam density, can be separated into two distinct parts. The first

concerns the deduction of the neutral deuterium beam density at JET Joint

Undertaking using both the theoretical and experimental approach. The second part

of this thesis involves developing a Bundled-nlSL colli sional-radiative model to

predict the attenuation and emission associated with a fast  neutral helium beam. The

model is then used to explore the attenuation and the behaviour of the excited state

population structure of the beam atoms as a function of typical plasma parameters.

Experimental aspects associated with beam emission spectroscopy at JET are

summarised and a detailed description of the atomic modelli ng required to support

the diagnostic exploitation of fast neutral deuterium and helium beams is given. The

modelli ng codes used and developed during the course of this work form part of the

Atomic Data and Analysis Structure, ADAS.
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1.0 Introduction

The spectroscopic measurement and monitoring of impurity radiation in tokamak

plasmas has not only led to key advances in the diagnosis of fusion plasmas, but has

also contributed to our understanding of the behaviour of atomic processes and

populations in a wide range of novel environments.

 A typical tokamak plasma consists mainly of electrons and deuterons

together with a small concentration of impurities[1,2]. The presence of such

impurities gives cause for concern. As tokamak plasmas are heated to  high

temperatures and confined for times required to meet the Lawson criteria[3], the

plasma impurities radiate energy through the emission of spectrum lines and

bremsstrahlung radiation, modifying the plasma resistivity as well as their own

sources from the vessel walls and the divertor target plates. Thus they produce many

effects, often unwanted, which require a detailed knowledge of impurity

concentration for their evaluation.

The current method of attempting to control plasma impurities is by

employing divertor configurations to channel the scrape off layer plasma to remote

target plates. The divertor essentially acts as an exhaust system to assist with the

removal of impurities from the bulk plasma[4] as well as inhibiting removed

impurities returning to the  confined plasma. These environments add to the demand

for the development of advanced spectroscopic methods which can measure impurity

ions with  greater accuracy.

1.1 Active and passive spectroscopy

The application of spectroscopy  to monitor plasma impurities can be categorised as

either passive or active. Passive spectroscopy involves exploiting the natural

emission from impurity ions or atoms in the thermal plasma, where as active

spectroscopy involves perturbing by external means the ions or atoms contained in

the plasma so as to enhance or alter their emission. The latter is potentially the more

accurate diagnostic procedure. Spectroscopy is not only confined to the study of

impurity concentrations in fusion plasmas, but important quantities such as the



2

plasma temperature and the electron density are also of interest. In the following

sections we show examples of both active and passive spectroscopic methods

1.1.1 Passive spectroscopy

Typical quantities which may be measured using passive spectroscopy include the

electron density and electron temperature from spectral li ne ratios, the effective ion

charge of the plasma as well as the impurity concentration and impurity fluxes from

absolute intensities and ion temperatures from line widths.

If  we first consider the use of spectral li ne ratios, a common method involves

exploiting the emission due to dielectronic satellit e lines associated with plasma

impurity ions[1,5], see figure 1.1.

Figure 1.1   Spectral emission due to dielectronic satellit e lines of He-like Cl XVI from the

COMPASS experiment. The electron temperature is obtained from the ratio of the lines w and k. The

diagram was taken from [5] where a detailed discussion can be found.

The satellit e lines arise due to radiative stabili sation following resonance capture in

the process of dielectronic recombination. As discussed by Coffey et. al.[5], the

electron temperature can be obtained from the ratio of the lines denoted by the labels

w and k. Also from the width of the w line the associated ion temperature can be
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inferred. The widths of passive emission lines can also be used to measure the

electron density via Stark broadening. A recent example reported by Terry et.al.[6]

and later by Meigs[7], involves utilising the high-n Balmer series, see figure 1.2.
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Figure 1.2   Spectrum of the high n-Balmer series for deuterium, courtesy of  Dr A. G. Meigs[7]. The

Stark widths of the high-n Balmer lines can be used to infer the electron density.  The average electron

density for low recombination ( 56.95 s ) is approximately 2.3 x 1019 m-3 and 3.5 x 1019 m-3 at high

recombination ( 60.75 s).

The high-n Balmer series arises due to the dominant role of recombination in low

temperature and high electron density environments.

Focusing on the passive measurements associated with impurity ions.  The

excitation and ionisation state of emitting impurities is almost entirely electron

impact driven. Also the interpretation is complicated by the non-localised nature of

the emission. Figure 1.3 shows a BeII feature typifying the experimental data used

for analysis of influx. More complicated inferences such as the recycling of neutral

hydrogen diffusing into the edge of the plasma has also been attempted. This is

achieved by exploiting the emission from impurity ions themselves following the

capture of an electron via thermal charge exchange[1,8],
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( )X D X DZ
edge

Z
edge

+ + − ++ → +0 0 1 1.1

Thermal charge exchange usually occurs at the edge of the plasma where the

conditions are such that hydrogen isotopes can act as donors to partially ionised

impurity ions[8]. The thermal charge exchange emission from CVI and CIII impurity

ions is also shown in figure 1.3.

Figure 1.3   Thermal charge exchange spectrum showing the emission from CVI(n=8-7) and

CIII( n=7-5) impurity ions. Also shown is the contribution to the spectrum due to a) impact excitation,

and c) active charge exchange emission. The diagram was taken from [8].

Finally, the effective ion charge of the plasma, which is a measure of the total

impurity content of the plasma, can be obtained from passive measurements of the

bremsstrahlung radiation[9].

1.1.2 Active spectroscopy

Active spectroscopy  as mentioned earlier, is not only more accurate but can be

employed to measure a range of parameters which are not readily accessible using

passive spectroscopy. Techniques such as pellet injection, gas puff ing and Laser

ablation[10] can all be used to study the impurity transport of the plasma. The active

introduction of trace impurities into the plasma is not only confined to the study of
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transport parameters, quantities such as the electron density and temperature can be

measured using line ratio techniques during gas puff ing experiments[11]. However

the most fruitful active diagnostic method arises from the injection of neutral atomic

beams into the plasma.

Neutral beam injection can be employed to investigate the edge as well as the

core of the plasma. As an edge diagnostic, slow neutral helium[12,13] and lithium

beams[14] are often employed to measure the edge electron density and temperature,

while fast neutral helium and deuterium beams, which penetrate into the core of the

plasma, can be used to measure a wide range of parameters[15,16,17]. Confining

ourselves to fast beams, neutral deuterium beams can be exploited as diagnostic

probes  to measure the concentration and temperature for a wide range of impurity

ions using active charge exchange spectroscopy[18]. Active charge exchange

involves measuring the emission from impurity ions following the capture of an

electron from the beam atoms,

( )X D s X DZ
b

Z
b

+ + − ++ → +0 0 11( ) 1.2

The impurity ion density can then be recovered from the recorded charge exchange

emission using the relation,

n
d

q n ds
z

CX

cx b
0

4
= ∫

∫
π λ λΦ ( )

1.3

where ΦCX is the charge exchange emission flux, qcx is the effective emission

coeff icient[19] and ∫nbds is the line integrated beam density. The ion temperature can

be obtained from the width of the Doppler broadened emission line in the usual

manner. We show in figure 1.4 an example of a deuterium beam active charge

exchange spectrum.
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Figure 1.4   Deuterium beam active charge exchange spectrum for CVI at 5290 
�

 ( T=19.3 keV ), also

shown is the passive emission spectrum. This diagram was taken from [16] where a full description of

the spectrum is given. The CVI concentration is obtained from measuring the total charge exchange

flux. The temperature is obtained from the width of  the Doppler broadened line.

Active charge exchange spectroscopy provides an accurate and localised

measurement of the plasma impurity densities. However the accuracy at which the

impurity concentration can be measured is governed by the accuracy at which the

neutral beam density is known.

The most common approach to determine the neutral beam density is to

employ a simple attenuation calculation which takes into consideration the atomic

processes which contribute to ionising the beam atoms[16]. However it is now

possible, in principle anyway, to accurately measure the neutral beam density using

Balmer-alpha beam emission spectroscopy[20]. As the neutral deuterium beam atoms

penetrate into the plasma, before they are ionise they become temporarily excited and

as they relax their emission contains information regarding the population of the n=3

shell of the beam atoms. The neutral beam density can then be recovered from the

beam emission spectrum using the relation,

n
n q

b

e

D

D

=






−

−

1 Φ α

α

1.4
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where ΦD-α is the total flux of the beam emission spectrum, ne is the electron density

and qD-α is the theoretical Balmer-alpha effective emission coeff icient. In working

plasmas the situation is complicated. The beam atoms experience an electric field

within their own frame of reference as a result of moving with a velocity through the

confining magnetic field of the tokamak. The influence of the electric field is to

remove the degeneracy associated with the energy levels of the beam atoms. This

gives rise to a Stark resolved energy level structure and the beam emission spectrum

is  observed as a series of Stark components, see figure 1.5.

In
te

ns
ity

(
a.

u
)

Figure 1.5  Beam emission spectrum for a high power double beam bank pulse from the JET

experiment. The beam emission spectrum is a complicated array of Stark components which overlap

each other. Also shown are the active and passive charge exchange signals which are in the spectral

vicinity of the beam emission  spectrum.

Turning our attention to the use of  fast helium beams. A neutral helium beam

can be used to measure the impurity concentrations and their associated temperatures

in the same manner as with a fast neutral deuterium beam. We show in figure 1.6 an

example of a helium beam active charge exchange spectrum.
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Figure 1.6   Helium beam active charge exchange spectrum. The figure on the left gives a general over

view of the features contained within the observed spectral region. The figure on the right is an

expanded figure showing thermal and non-thermal components. These figures were taken from [16]

where more information can be found.

There are however significant benefits of using a neutral helium beam rather than a

fast deuterium beam as a diagnostic probe. The most practical benefit involves

reducing the generation of neutrons during plasma operation. A fast neutral

deuterium beam contributes to producing neutrons via the beam-beam and beam-

plasma interaction[21]. These unwanted neutrons contribute to activating the

experimental vessel as well as complicating the analysis of the neutron flux signals

from the bulk plasma. Using a neutral helium beam (3He) removes this problem since

the contribution to the neutron production due to the beam-beam and beam-plasma

interaction is very small.

There are also diagnostic benefits, the most obvious concerns the detection of

alpha particles via the resonant process of double charge exchange[22]. More

interestingly though, is the new diagnostic capabiliti es which may arise due to the

presence of metastable levels in the beam atoms. If the He(2 3S) metastable is

significantly populated it may act as a charge exchange donor. Preferential charge

exchange between the ground state and the He(2 3S) with different plasma impurity

ions may be possible. This would lead to a more flexible charge exchange diagnostic.
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It should be noted though that the use of a fast neutral helium beam is very much still

in its infancy. There are many issues which require some investigation. For example,

what happens to the metastable population as the beam traverses the plasma?, what is

the behaviour of the excited state population structure?, and do the metastables levels

contribute significantly to the beam attenuation?. The application of beam emission

spectroscopy with a neutral helium beam also requires some attention. It is expected

that the lines associated with the n=3 to 2 shell for both spin systems can be of

immediate diagnostic use[23]. A more interesting aspect concerns the excited levels

of the beam atoms where the Lorentz electric field results in the formation of

forbidden lines. These lines may be of use to infer the internal magnetic field of the

plasma[24]. However extensive spectroscopic observations are still required to

explore the diagnostic potential of the helium beam emission spectrum.

1.2 Aim of this work

There are two main topics which we address in this work. The first involves

measuring the neutral deuterium beam density at JET Joint Undertaking[25] via

beam emission spectroscopy. The primary aim is to be able deduce the neutral beam

density for high power double beam bank pulses on a reliable basis. Continuing along

this theme we also consider the evaluation of the neutral beam density using a

numerical attenuation calculation. To achieve the former and latter we employ a

bundled-nS colli sional-radiative model to evaluate effective stopping and Balmer-

alpha emission coeff icients. We also aim to show the parameter dependencies of

these coeff icients and the underlying role of the atomic processes which contribute to

the attenuation and population redistribution of the neutral deuterium beam atoms. A

comparison is then made between the numerical attenuation calculation and the

results obtained from the spectroscopic measurements.

The second topic which is of concern involves modelli ng the attenuation and

the excited state population structure of a fast neutral helium beam. To address some

of the uncertainties with regards to a fast helium beam we have developed a bundled-

nlSL colli sional-radiative model. This model is employed to investigate the

behaviour of the excited state population structure, the evolution of the metastable
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populations and the beam attenuation. Effective cross coupling coeff icients are also

calculated and their parameter dependencies are explored.

During the course of this work, computational tools designed to archive and

study the global behaviour of the derived atomic data for both neutral deuterium and

helium beams have also been developed. These programs, together with the bundled-

nlSL model, have been written for general use within the Atomic Data and Analysis

Structure package, ADAS.

1.3 Atomic Data and Analysis Structure

The Atomic Data and Analysis Structure package[26] is a collection of programs and

databases which have been designed to assist with the modelli ng and analysis of

spectral observations from fusion and astrophysical plasmas. There are three main

components of the ADAS system. These include a suite of interactive programs, a

collection of fundamental and derived atomic databases and a library of FORTRAN

routines. If we first consider the interactive programs. The ADAS package consists of

seven different series of modelli ng codes, each of which addresses different areas of

atomic physics. In any given series there are a number of individual programs. Each

of the programs are driven by an IDL interface while the main calculation is done

using a FORTRAN routine which is ‘spawned’ fr om the IDL. The main interface of

ADAS  can be seen in figure 1.7.

Figure 1.7   Snap shot of the main IDL interface of the Atomic Data Analysis Structure Package.
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The processing screen contains an array of toggle buttons which correspond to each

of the series of modelli ng codes. If the user activates a button, the menu

corresponding to the list of programs for that particular series will appear. As an

example we show in figure 1.8 the menu for the series three programs.

Figure 1.8   Snap shot of the series three menu system.

If the user then activates any of the toggle buttons a series of interactive panels will

guide the user through the calculation of interest.

Focusing on  the derived and fundamental atomic databases of ADAS. There

are a total of twenty six databases, each of which are archived according to an ADAS

data format prescription[26]. To distinguish each database they are individually

assigned an ADAS data format number e.g. adf21. The fundamental atomic databases

are based on extensive compilations of the best available experimental and

theoretical data, while the derived atomic databases contain the output from the

modelli ng codes of ADAS and are conveniently stored in a format to be of direct use

to experiment.

The last component of the ADAS system  is the library of FORTRAN

routines[27]. These routines are designed to allow the user to access the fundamental

and derived atomic databases for their own application. Also there are routines which

evaluate quantities which may also be of interest for individual applications.
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1.4 Format of thesis

We begin in chapter 2.0 by describing the physical conditions of tokamak plasmas

and the atomic processes which contribute to the attenuation and the excited state

population structure of neutral deuterium and helium beam atoms. We also discuss in

detail the colli sional-radiative approach of modelli ng beam attenuation and emission,

which is the method adopted in this work. A brief literature review of previous work

is also given.

Chapter 3.0 outlines the application of colli sional-radiative theory in the form

of the bundled-nS deuterium beam model and the more elaborate bundled-nlSL

helium beam  model. The computation implementation of each of these models are

discussed within the context of ADAS and an account of their operation and

validation is also given.

A detailed study of the parameters dependencies of the effective stopping and

Balmer-alpha emission coeff icients for a deuterium beam  is the subject of Chapter

4.0. In this chapter we also discuss the archiving and the rapid assembly of the

effective coeff icients  for experimental analysis. This chapter serves as a preamble to

chapter 5.0 which details the application of the bundled-nS model in an attempt to

exploit the beam emission signature at JET Joint Undertaking. The spectroscopic

deduction of the neutral beam density using the beam emission flux and the Balmer-

alpha emission coeff icients is the topic of interest here. The evaluation of the neutral

beam density using the theoretical beam stopping coefficients is also of concern.

In chapter 6.0, using the bundled-nlSL model we investigate the parameter

dependencies of the colli sional-radiative coeff icients and the equili brium excited

state populations. We also investigate the implications of neglecting the metastable

nature of the He(2 1S) and He(2 3S) levels while evaluating their population. A study

of the attenuation of a fast neutral helium beam, while altering the initial metastable

content on entry to the plasma, is also undertaken. A summary and discussion

regarding the contents of the thesis is then given in Chapter 7.0.



13

2.0 Atomic modelling relevant to neutral beam driven diagnostic

2.1 Introduction

To fully exploit the diagnostic potential of injecting neutral atomic beams into

tokamak plasmas, a detailed knowledge of the attenuation and the excited state

population structure of the neutral beam atoms is required. To obtain such

information requires quite elaborate statistical models which include detailed

descriptions  of the atomic processes which contribute to exciting and ionising the

penetrating beams. The pathways through the complexity depends on the conditions

of the plasma, the ranking of atomic and plasma li fetimes and the actual  beam atoms

themselves.

In this chapter we discuss the broad assumptions which are employed to

enable us to model the attenuation and excited state population structure of neutral

deuterium and helium beam atoms. We then summarise the particular primary and

secondary atomic processes which are involved for each beam species. We ill ustrate

in detail the behaviour of each process as a function of energy since  this allows one

to quantitatively assess the varying and relative influence of each atomic process.

Finally, we explain the choice of statistical  models which we employ and give a

historical review of  previous modelling approaches by others.

2.2 Physical conditions and separation of time scales

2.2.1 Thermodynamic equilibrium

For a plasma which has reached thermodynamic equili brium, the distribution of the

plasma particles on an atomic level can be described using equili brium statistical

mechanics. The radiation field in such a plasma is free of any spectral li nes and is

that of a blackbody. The radiation field is Plankian with an energy density,

( ) ( )U
h d c

h k TB r

ν
π ν ν

ν
=

−
8

1

3 3/

exp /
2.1
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where kB is boltzmann’s constant, ν is the frequency of the photons and Tr is the

temperature of the radiation field which is equal to both the electron and ion

temperature.

The velocity distribution and the excited state population structure of the

plasma constituents can be described by Maxwell -Boltzmann statistics. For a particle

of mass m and temperature T the speed distribution is Maxwellian,

( )f
m

kT

m

k TB

v v
v

= 



 −







4

2 2
2

3

2
2

π
π

exp 2.2

where v is the particle velocity.

The excited state population distribution of a single atom or ion contained in

the plasma is given by Boltzmann’s equation which relates the population of two

levels, Ni and Nj, their statistical weights and their excitation energies as,

( )N
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E E
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When the population distribution of more than one ionisation stage of a particular

species are compared, we can extend Boltzmann’s equation to describe the excited

state population of one ionisation stage relative to the ground state of the next

ionisation stage.  This is called the Saha-Boltzmann equation which is given as,

N n n
a I

kT

w

w
I

kTi e
H

e

i i=






 



+

+
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2

0
2

3
2π

exp 2.4

where Ni and wi are respectively the population and statistical weight of the level i .

The quantity n+ is the population of the ground state of the next ionisation stage, w+

is the corresponding statistical weight and ne is the free electron number density.

There is yet another useful property associated with plasmas which are in

thermodynamic equili brium. That is the principle of detailed balance. The

distribution of energy amongst the electrons and ions  has reached equili brium at a

particular temperature, therefore the rate at which atomic processes contribute to
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populating or depopulating excited levels of ions or atoms contained in the plasma

will be balanced by the rate of the corresponding reverse processes. In such

circumstances we describe the forward atomic processes to be in detailed balance

with the reverse processes. For example, spontaneous and stimulated  emission

would be in detailed balance with photo-excitation. This principle can be used to

arrive at relationships which connect the coeff icients used to describe the rate at

which the forward  and reverse reaction of a particular atomic process occurs. If  we

consider electron impact excitation for which the corresponding reverse reaction is

electron impact de-excitation, it can be shown using equation 2.3 that the rate

coeff icients for the forward (qi→j) and the reverse (qj→i) reaction satisfies the

relationship,

( )
q q

w

w

E E

k Ti j j i
i

j

i j

B e
→ →= −

−









exp 2.5

where Te is the electron temperature. Therefore the rate coeff icient for electron

impact de-excitation  can be obtained from the rate coeff icient for electron impact

excitation and vice versa.

2.2.2 Local thermodynamic equilibrium

Tokamak plasmas however are far from thermodynamic equili brium. This is

primarily due to the fact that radiation can easily escape from the plasma. Under

normal operating conditions tokamak plasmas are optically thin to their own

radiation. Due to the magnetically confined particles though the plasma does

approach conditions which are near to thermodynamic equili brium. Elastic colli sions

between electrons and between protons and between electrons and protons are

eff icient to establish Maxwelli an velocity distributions. Excited levels of atoms and

ions in the plasma which are populated and depopulated by electron and proton

colli sions approach values that would have been obtained as if the plasma was in

thermodynamic equili brium. This condition is called local thermodynamic

equili brium, LTE.  For excited levels which are in LTE, Maxwell -Boltzmann

statistics are valid.
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The formation of LTE conditions in a plasma is governed by the rate at which

the plasma constituents take up Maxwelli an distributions. For free particle

distributions as discussed by Spitzer[28], this is characterised by so-called slowing

down times. The slowing down time describes the rate at which the kinetic energy

distribution between two elastic colli sion partners approaches that of a Maxwelli an.

In the tokamak plasma we are concerned with electron-electron, proton-proton and

electron-proton relaxation. The electron-proton slowing down time is usually referred

to as the equili bration time. The slowing down time associated with electron-electron

collisions (τe-e) is given by Spitzer ( see page 133 ),

τ e e
e

e

T

n− = 0266
3

2

.
lnΛ

2.6

where Te and ne are respectively in units of °K and cm-3. The quantity ln Λ is the

Coulomb logarithm for which tabulated values are also given by Spitzer. Similar

formulae give the slowing down time for proton-proton colli sions (τp-p) and the

equilibration time between electrons and protons (τeq) and these are related by,

τ τ τ τp p

p

e
e e p p e e

m

m− − − −≈






 ≈

1
2

43    2.7

τ τ τ τeq

p

e
e e eq e e

m

m
≈ ≈− −1836        2.8

In the context of the present work it is instructive to compare the slowing down and

equili bration times to the energy confinement time of the JET tokamak plasma. This

will enable us to assess if the free particle Maxwelli ans are achieved in a tokamak

plasma and the degree to which Maxwell -Boltzmann statistics can be applied to

highly excited ion populations. In table 2.1 we show the slowing down and

equili bration times for a plasma with a temperature of 2.0 x 103 eV as a function of

electron density.
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Ne (cm-3)   1.0 ×× 1013 3.0 ×× 1013 5.0 ×× 1013 7.0 ×× 1013 1.0 ×× 1014

ττe-e (s) ~2.1 × 10-4 ~7.0 × 10-5 ~4.2 × 10-5 ~3.0 × 10-5 ~2.1 × 10-5

ττp-p (s) ~9.0 × 10-3 ~3.0 × 10-3 ~1.8 × 10-3 ~1.2 × 10-3 ~9.0 × 10-4

ττe-p (s) ~0.3 ~0.1 ~0.07 ~0.05 ~0.03

Table 2.1   Slowing down and equili bration times. The temperature was 2.0 x 103 eV and  the

Coulomb logarithm was taken to be approximately 14.

The confinement time of the JET tokamak plasma is approximately 1.0 second,

therefore from table 2.1 it can be seen that the formation of free particle Maxwelli ans

can easily be achieved. It should be noted though that excited levels of ions and

atoms which are primarily populated and depopulated by radiative processes do not

satisfy the criteria for LTE. This occurs for low lying excited levels where colli sional

redistribution is less effective. This condition is described as non local

thermodynamic equili brium, non-LTE. In non-LTE environments Maxwell -

Boltzmann statistics can not be used to describe the excited state population structure

of  plasma ions and atoms and an alternative method is sought.

2.2.3 Statistical balance equations

A general approach used to obtain the population of non-LTE and LTE levels is by

solution of the statistical balance equations. The statistical balance equations

represent the rate at which the excited levels of an atom or an ion are populated and

depopulated. In the present work, where we are interested in modelli ng the excited

population structure of neutral beam atoms,  the statistical balance equations are,

( ) ( )dN
i

dt
v
b

dN
i

dx
Populating N

i
Depopulating N

i
+ = → − ←   2.9

for i=1, 2, 3...

where  vb is the beam velocity and dx is along the beam path. The terms in the

brackets on the right hand side represent the rate at which the atomic processes

contribute to populating and depopulating each of the excited levels of the beam



18

atoms, whilst the terms on the left hand side include a spatial and time dependent

derivative. The spatial derivative represents the rate at which the populations change

due to alterations in the local environment as the beam atoms continue into the

plasma. The time derivative accounts for a change in the population due to a

variation in the source of the beam atoms. The neutral beams which are of interest in

this thesis however are considered to be steady state sources and the time derivative

of equation 2.9 can be set to  zero i.e. dNi/dt = 0. The solution of the above equations

yield the population density of each level, Ni,  and as discussed later, further

manipulation of the equations enables one to describe the attenuation of the beam

atoms.

2.2.4 Ranking of atomic lifetimes

The method of solving the statistical balance equations is now the point of interest.

To determine the most convenient method of solution one has to compare the time

scales on which the local plasma conditions change relative to the li fetimes

associated with the excited levels of the neutral beam atoms. The local plasma

conditions include the electron and ion density as well as their associated

temperatures. If the atomic li fetimes are short in comparison to the time scales on

which the local conditions change, the excited states of the beam neutrals can relax

and achieve a steady-state equili brium population. In such circumstances we can

reduce the statistical balance equations to a simple system of linear equations i.e.

vbdNi/dx = 0 . We call this the quasi-static equili brium solution. If however the local

conditions change more rapidly which prevents the excited states to relax, a spatially

dependent solution of the statistical balance equations is necessary.

The atomic li fetimes associated with the excited levels of an atom can vary

enormously. However it is possible to separate the excited levels into three distinct

categories according to their li fetime[29]. These are autoionising, ordinary  and

metastable levels. The lifetime of these levels respectively satisfy the inequality,

τ τ τa o m<< << 2.10
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where τa is ~10-12 s, τo is equal to the reciprocal of the associated transition

probabilit y and τm ~ 10/z0
4. To quantitatively assess the time scales  on which the

local conditions of the plasma change  involves evaluating scaled lengths for both the

electron and ion density and their respective temperatures[30]. The scaled lengths

represent the spatial distance over which the beam atoms can travel before the former

and latter  parameters begin to change substantially. As an example the scaled length

for the electron density is defined as,

�
n

e

e

e n

dn

dx
=











−
1

1

2.11

It is more convenient though to convert the scaled length into an apparent li fetime

using the relation,

τ n

n

b
e

e

v
=

�

       2.12

The li fetime gives the time scale on which  the electron density changes and can be

used to compare with the atomic li fetime of the beam atoms. The time scales on

which the remaining plasma parameters change are also obtained in a similar manner.

In the present work though, to a good approximation, the time scales on which the

local plasma conditions alter ( τd ) is comparable to the  li fetime of the metastable

levels. Therefore we can then extend the ranking of the lifetimes,

τ τ τ τa o m d<< << ≈ 2.13

In the case of modelli ng the excited population structure of neutral deuterium

beam atoms, from the ranking of atomic li fetimes the excited states will reach an

equili brium population. To obtain the excited state population structure the statistical

balance equations, excluding the ground state, can be reduced to a system of linear

equations i.e. ∑ vbdNi/dx = 0, see section 3.2.

Modelli ng the excited state population structure of a neutral helium beam is

some what different. The presence of  two excited metastable levels ( He(2s 1S) ,

He(2s 3S) ) complicates the modelli ng. In any case the excited states, excluding the
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two metastable levels, will approach an equili brium population. The statistical

balance equations can be reduced to a system of linear equations with the exception

of the ground and the two metastable levels i.e.  ∑ vbdNi/dx = 0, see section 3.3.  It

should be noted that it is also important to be able to calculate the population of the

non-equili brium metastable levels. This can be achieved via a spatially dependent

solution of  the statistical balance equations, see chapter 6.0.

2.3 Atomic processes associated with a neutral deuterium beam

The penetration of a neutral deuterium beam into a plasma is governed by the

behaviour of the  primary and secondary atomic processes which contribute to

stripping the electrons from the neutral beam atoms. The primary atomic processes

we consider first are for a pure D+ plasma and are those which directly deplete the

ground state, namely direct charge exchange as well as electron and ion impact

ionisation. In figure 2.1 we show the fundamental cross sections for each process.
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Figure 2.1   Cross sections for the direct atomic process associated with deuterium beam atoms.

As can be observed the contribution from each atomic process is determined by the

relative colli sion energy. Charge exchange dominates until around 20 keV where the

influence of ion impact ionisation becomes important. We emphasise that figure 2.1

shows the fundamental cross sections and not the rate coeff icients, therefore the
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contribution due to electrons appears to be very small . It should be noted that the

electrons  are moving with a velocity which is approximately 60 times faster than the

D+ ions and the resultant rate coeff icient will be significant. Nevertheless charge

exchange marginally remains the dominant process at the low energies.

The secondary atomic processes, which influence the ionisation of a

penetrating deuterium beam, can be subdivided into two categories. The first

category concerns bound-bound processes which excite the beam atoms and then

contribute to the colli sional and radiative redistribution amongst their excited states.

The second category are the bound-free colli sional processes which deplete the

excited state populations. In the present context however we restrict ourselves to

discussing the behaviour of the bound-bound and bound-free colli sional processes,

since under optically thin plasma conditions the only significant radiative process is

that of spontaneous emission.

Colli sional excitation and redistribution amongst the excited states are driven

by electron and ion impact from the ground and neighbouring excited states. In the

plasma, these processes are also accompanied by their corresponding reverse

reactions, that is electron and ion impact de-excitation. In figure 2.2  we contrast the

behaviour of the excitation cross sections for  colli sions with ions (D+) and electrons.

As can be observed, electron impact excitation is dominant at the lower energies. As

the energy is increased, the contribution due to electron impact excitation becomes

negligible as ion impact excitation becomes important.

The dominant bound-free processes responsible for ionising the excited state

populations include ion impact ionisation and charge exchange.  In figure 2.3 we

contrast the behaviour of each process as a function of energy for different principal

quantum shells. Also shown is the behaviour of electron impact ionisation from the

n=2 and n=3 shell.
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Figure 2.2    Cross sections for electron and ion impact excitation from the ground state to the n = 2,

3, 4 and n=5 shell.
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Figure 2.3   Impact ionisation and charge exchange cross sections associated with the n=2, 3 and n=4

shell.

As shown in figure 2.3, the contribution due to electron impact ionisation appears to

be small due to the presence of charge exchange which is dominant up to 3.0 keV,
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see earlier. We note the magnitude of the charge exchange and ion impact ionisation

cross sections which increase with the principal quantum number ( c.f. figure 2.1 ).

In tokamak plasmas the atomic processes associated with impurity ions

should also be given some consideration, due to their unavoidable presence they can

also contribute to stripping the electron from the neutral beam atoms. In figure 2.4 we

show the cross sections for direct charge exchange and ion impact ionisation of the

beam atoms due to colli sions with a select range of fully stripped ions which are

common plasma impurities.
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Figure 2.4   Cross sections for direct charge exchange and ion impact ionisation of the deuterium

beam atoms for a selected range of fully stripped plasma impurity ions. The figure to the left exhibits

the charge exchange cross sections while the figure to the right shows the behaviour of ion impact

ionisation cross sections.

It can be observed from both figures, that the magnitude of  the cross sections which

describe each process increase with nuclear charge. Similar observations can be made

for the remaining atomic processes associated with each of the impurity ions. These

include ion impact excitation as well as charge exchange and ion impact ionisation

from the excited states of the beam neutrals. The concentration of each impurity ion
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in a tokamak plasma is small ( < 5 % ), however due to their large cross sections their

influence on stripping the electrons from the beam atoms is comparable to that of the

D+ ions which is the main constituents of the plasma ( > 90 % ).

2.4 Atomic processes associated with a neutral helium beam

The penetration of a neutral helium beam into a tokamak plasma can similarly be

characterised by the primary and secondary atomic processes which contribute to

stripping the electrons from the neutral beam atoms. Due to the presence of two

bound electrons associated with the beam atoms, both of which may be active, the

variety and complexity of the primary and secondary processes increases

substantially over that for a deuterium beam. The main processes are as follows,

(i) Single and double electron impact ionisation

e + He(1s2 1S)      →  e + He+ + e

e + He(1s2 1S)     →   e + He2+ + e + e

(ii) Single and double ion impact ionisation

X+z0 + He(1s2 1S) →  X+z0 + He+ + e

X+z0 + He(1s2 1S) → X+z0 + He2+ + e + e

(iii) Single and double charge exchange

X+z0 +He(1s2 1S) → X+(z0-1) + He+ 

X+z0 +He(1s2 1S) → X+(z0-2) + He2+

(iv) Ion and electron impact excitation / de-excitation

X+z0 +He(nl 1S) ↔ X+z0 + He(nl 1S) 

e + He(nl 2S+1L) ↔  e + He(nl 2S+1L)

(v) Transfer double ionisation

X+z0 +He(1s2 1S) → X+(z0-1) + He2+  + e

            (vi) Spontaneous emission

           He(nl 2S+1L) → He(nl 2S+1L) + hν

The primary atomic processes which are responsible for directly stripping the

electrons from the neutral helium beam atoms include single and double impact
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ionisation, single and double charge exchange as well as single transfer ionisation. In

figure 2.5 we show the cross sections which describe the behaviour of each of these

processes.
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Figure 2.5   Cross sections for the primary atomic processes which contribute to stripping the

electrons from the He(1s2 1S) ground state of the beam atoms. �  :  Single electron impact ionisation,

∇  : Double electron impact ionisation, + : Single charge exchange, × : Single ion impact ionisation, ∆ :

Transfer double ionisation, �  : Double ion impact ionisation .

As can be observed the role of single electron impact ionisation dominates at the

lower energies. At ∼ 750 eV single charge exchange becomes important and a

competition between single ion impact ionisation commences. The competition

continues until around ∼ 17.5 keV where single ion impact ionisation becomes

substantial.

In the same manner as discussed in section 2.3 for a deuterium beam, the

secondary atomic processes which contribute to exciting and ionising a penetrating

helium beam can be categorised into two sections. The first category concerns bound-

bound processes whilst the second includes bound-free. We confine ourselves here to

describing  only the behaviour of bound-bound and bound-free collisional processes.

Colli sional redistribution amongst the excited states of the beam atoms is

primarily due to electron and ion impact excitation from the He(1s2 1S) ground and
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neighbouring excited states. In the plasma, these processes are also accompanied by

their corresponding reverse reactions. That is electron and ion  impact de-excitation.

Electrons can populate both the singlet and triplet excited states whilst ions can only

populate the excited singlet states. This is due to the fact that for a spin changing

transition to occur  an exchange reaction between like particles is required. We show

in figure 2.6 the behaviour of electron and ion (D+) impact excitation from the He(1s2

1S) ground state to various excited singlet levels.
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Figure 2.6   Cross sections for electron and ion impact excitation from the He(1s2 1S) ground state to

various excited singlet levels . Ο : Electron impact excitation, ∇  :  Ion ( D+) impact excitation .

Electron impact excitation, as mentioned before, can also contribute to populating the

triplet excited levels. This can occur through direct excitation from the ground state

of the beam atoms or via excited state transitions from the singlet to triplet spin

system. In figure 2.7 we show the behaviour of electron impact excitation from the

ground to various excited triplet states. Also shown is the electron impact excitation

cross sections from the He( 2s 3S) metastable level to neighbouring excited levels.
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Figure 2.7  Cross sections for electron impact excitation. The figure to the left ill ustrates the

behaviour of  excitation from He(1s2 1S) to excited triplet levels. The figure to the right contains

excitation cross sections for transitions from the He(2s 3S) metastable to neighbouring excited levels.

Due to the presence of metastable levels in helium i.e. He(2s 1S) and He(2s
3S), we should also focus our attention on the atomic processes associated with these

levels. The motivation being that the metastable population may become significant

as the beam penetrates into the plasma. Therefore the associated atomic processes

will contribute substantially to stripping the electrons from the beam atoms. In figure

2.8 we show the behaviour of the primary atomic processes which contribute to

stripping the electrons from the He(2s 3S) metastable level.
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Figure 2.8  Cross sections for  the atomic processes which contribute to stripping the electrons from

the He(2s 3S) metastable level.

As can be seen, electron impact ionisation dominates until ∼ 200 eV where the

contribution due to charge exchange becomes substantial. In the usual manner ion

impact ionisation competes with charge exchange. It is of interest to compare the

behaviour of the atomic processes shown in figure 2.8 with the corresponding

processes associated with the He(1s2 1S) ground state, see figure 2.5. The cross

sections involving the He(2s 3S) level are larger than that associated with the ground

state. It can also be observed that the charge exchange cross section associated with

the triplet metastable begins to dominate at ∼ 200  eV and continues to do so until

∼ 5.0 keV. In the case of  the ground state the dominant behaviour of the charge

exchange process occurs from ∼ 750   eV to ∼ 17.5 keV.

The influence of impurities contained in the plasma should also be taken into

consideration since they will contribute to stripping the electrons from the helium

beam atoms. In figure 2.9 we ill ustrate the behaviour of single and double charge

exchange associated with the ground state of the beam atoms  for a selected range of

fully stripped ions which are common plasma impurities.
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Figure 2.9   Single and double charge exchange cross sections associated with the He(1s2 1S) ground

state. The figure to the left ill ustrates the cross sections for single charge exchange for a selected range

of fully stripped ions which are common plasma impurities. The figure to the right shows the cross

sections for  double charge exchange.

As ill ustrated in the figure above, single charge exchange exceeds double charge

exchange for all the ions with the exception of fully stripped helium. Below  ∼ 10 keV

amu-1 double charge exchange dominates single charge exchange for helium.  Double

charge exchange between fully stripped helium and neutral helium atoms is a

symmetrical resonant process and as a consequence has a large cross section[31]. In

figure 2.10, we ill ustrate the behaviour of single and double ion impact ionisation for

a similar variety of fully stripped plasma impurity ions.
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Figure 2.10   Cross sections for single and double ion impact ionisation from the He(1s2 1S) ground

state of the beam atoms. The figure to the left shows the cross sections for single ion impact ionisation

for a variety of fully stripped ions which are common plasma impurities. Also shown in the figure for

comparison is the cross section describing single ion impact ionisation due to H+. The figure to the

right ill ustrate the cross sections  for  double ion impact ionisation for a similar range of plasma

impurities.

We must also take into consideration the contribution due to  the plasma

impurity ions at stripping electrons from the metastable levels of the beam atoms. In

figure 2.11 we show the cross sections for charge exchange and ion impact ionisation

from the He(2s 3S) metastable for a selected range of fully stripped plasma

impurities.
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Figure 2.11   Charge exchange and ion impact ionisation from He(2s 3S) metastable level. The figure

to the left ill ustrates the cross sections for single charge exchange for various fully stripped  plasma

impurity ions. The figure to the right exhibits the cross sections for  ion impact ionisation .

It is of interest to compare the charge exchange cross sections shown above with the

cross sections associated with the ground state of the beam atoms, see figure 2.9. It

can be observed that the cross sections associated with the He(2s 3S) level are

substantially larger than the cross sections associated with the ground state.

2.5 Approaches to modelling

When fast neutral beam atoms are injected  into a tokamak plasma, the impurity ion

impact atomic processes which excite and ionise the beam neutrals are the most

important and so the population structure is primarily governed by the ion density.

There are three different ‘pictures’ of the population structure which apply to the

particular regimes of  the ion density. These are schematically shown in figure 2.12
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Figure 2.12   Schematic energy level structure of an arbitrary beam atom. The dashed and solid lines

represent the radiative and colli sional processes respectively. Working from left to right. Firstly the

coronal picture, the beam atoms can only be ionised by direct colli sional ionisation from the ground

state. Next is the colli sional-radiative picture where the beam atoms can be ionised by direct and

stepwise atomic processes. Finally, the high density picture which describes the regime where the

colli sional processes completely dominate the radiative processes. Ionisation is due to direct and

stepwise collisional processes, excitation also contributes to ionisation.

The first ‘picture’ applies to a low density plasma ( < 1.0 x1011 cm-3 for pure

D+ plasma) where the conditions are such that the beam atoms can only be ionised by

colli sional ionisation ( which may include charge transfer ) from their ground state.

There is no significant contribution to ionisation from the excited states. This is due

to the fact that in this regime the excited populations are low relative to the ground

population. The excited levels are populated by electron and ion impact excitation

from the ground but rapidly depopulate by radiative decay before any further

excitation or ionisation can occur. This is described as the coronal picture.

As the ion density of the plasma increases (~1.0 x1013 cm-3 for a pure D+

plasma), the influence of the colli sional processes increases so that a competition

with the radiative processes commences. The beam atom population structure is now

determined by a wide range of colli sional and radiative processes associated with

their ground and excited states. The beam neutrals can now be ionised by direct and

stepwise atomic processes. This is called the collisional-radiative picture.

The last ‘picture’ which is of interest occurs when the ion density of the

plasma is increased substantially (~1.0 x 1018 cm-3 for a pure D+ plasma), so that
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colli sional processes completely dominate the radiative processes. The contribution

to the ionisation of the beam atoms is due to direct and stepwise colli sional atomic

processes associated with the ground and excited states. The excited state populations

diminish. This is called the high density picture. In such a regime the condition of

local thermodynamic equilibrium is achieved both for high and low lying levels.

2.5.1 Coronal equilibrium model

 The coronal picture gives the simplest approach to obtain the excited state population

structure of the beam atoms, as well as the rate at which they are being ionised. In

this case, for the ionisation loss from the ground state there is no need to consider the

contribution from the excited  states. If we consider a simple case where the beam

atoms have no metastables and the plasma is free of impurities, the statistical balance

equations for the excited levels ( i > 1 )  are of the form,

v
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for i = 2 , 3, …

where N1 corresponds to the population of the ground state, qe
1→i and qp

1→i are the

colli sional excitation rates to level i due to electrons and protons respectively. The

quantity A i→j is the transition probabilit y from the level i to level j . The population

structure can be obtained by assuming the excited levels have relaxed and reached

equili brium relative to the instantaneous ground population. Therefore  vbdNi/dx =0.0

and equation 2.14 reduces to a set of linear equations which yield the excited

populations relative to the ground state population N1 by downward recursion. The

corresponding statistical balance equation for the ground state is given as,
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where qe
1→∞ , q

p
1→∞ and qcx

1→∞  are the respective contributions due to direct electron

and proton impact ionisation as well as charge exchange. If we then substitute

equation 2.14, under the assumption that the excited states have reached equili brium,

into equation 2.15 we arrive at,

( )v
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dx
n q n q n q Nb e

e
p

p
p

CX1
1 1 1 1= − + +→∞ →∞ →∞ 2.16

Assuming that the majority of the beam atoms are initially in their ground state, this

equation can then be used to model the attenuation of the beam. It is more convenient

though to describe the attenuation of the beam in terms of an effective stopping cross

section which is defined as,
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where σs is the effective beam stopping coeff icient. The effective stopping coeff icient

can then be used to evaluate the beam attenuation at any given point along the beam

using the following relation,

( )n n n dlb e s= − ∫0 exp σ  2.18

where n0 is the initial beam density on entry to the plasma and dl is along the path

taken by the neutral beam. It should be noted however that equation 2.18 is only valid

provided  the beam atoms of interest does not contain any long lived metastable

levels.

2.5.2 Collisional-radiative model

The simple coronal picture however is only applicable for low density plasmas where

the radiative processes occur on time scales faster than the colli sional processes. In

tokamak plasmas the ion densities are suff iciently high and encourage the colli sional
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processes to compete with the radiative processes. The excited states of the beam

atoms are populated and depopulated by both colli sional and radiative processes.

This is the so called colli sional-radiative picture. The statistical balance equations for

an arbitrary beam atom are,
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for i =1, 2 , 3, …

where i ′′  < i < i ′ and qi→i ′ is the excitation rate from state i to i ′ by electrons and

protons according to the superscript. The corresponding de-excitation rate is given as

qi ′→i and A i ′→i is the spontaneous emission coeff icient for the radiative transition

from level i ′ to i. Impact ionisation is represented by qi→∞ where the superscript

indicates whether it is by electrons or protons and the rate coeff icient for charge

exchange from state i is given as qcx
 i→∞ . The quantities αRR , αDR and α(3) are

respectively the contributions due to radiative, dielectronic and three-body

recombination. The quantity αCX  is the contribution due to charge exchange where

the beam atoms themselves are the donors. It should be noted though that since the

beam atoms are in a strictly ionising environment the latter and former recombining

processes only become of interest when the neutral beam atoms are moving with

such a slow velocity that they can be considered stationary. In which case the

statistical balance equations describe the conditions of a thermal plasma rather than a

point in the plasma which is traversed by a neutral beam.

The statistical balance equations in equation 2.19 form the basis of what is

formally known as colli sional-radiative modelli ng and is the method adopted in this

work. Colli sional-radiative modelli ng, as originally developed by Bates et. al.[32],

involves solving the statistical balance equations while taking into consideration the

influence of stepwise atomic processes. Quantities such as the excited population
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structure and colli sional-radiative coeff icients are of interest. The colli sional-

radiative coeff icients include  effective cross coupling, ionisation and recombination

coefficients.

To recast the statistical balance equations into the framework of generalised

colli sional-radiative theory a common starting point is to write equation 2.19 using

matrix notation,
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j

= −+ ∑ 2.20

for i =1, 2 , 3, …

where Cij ( Cij ≡ Cj→i ) is the colli sional-radiative matrix for which the matrix

elements are defined as follows.

C
A n q n q j i

n q n q j i
ij

j i e j i
e

p j i
p

e j i
e

p j i
p

=
+ + >

+ <





î
→ → →

→ →

2.21

and,
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The variable ri is the composite recombination coefficient and is defined as,

( )r
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e
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i e= + + +α α α α 3 2.23

Following the work of Spence[19],  if we generalise and assume that the beam atoms

of interest have m ‘non-equili brium’ levels ( that is levels whose populations are not

locally relaxed ), we can separate the ordinary excited levels which have reached

local equili brium from the non-equili brium levels. Letting Nj
eq denote the

equilibrium excited level populations then,
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where equation 2.24 describes the population of the non-equili brium levels which are

denoted by the Greek subscript ρ. The ground state is of course such a non-

equili brium level. Generally the ground state and metastable states are the non-

equili brium levels for beams in fusion plasmas. Equation 2.25 describes the

behaviour of the excited levels which have reached equili brium. Separating the non-

equilibrium and equilibrium populations in 2.24 and 2.25 gives,
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Therefore the  equili brium population can be obtained by multiplying equation 2.27

by the inverse of Cij,
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If we now substitute this equation back into equation 2.26 we arrive at,
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Which is more commonly written in terms of the time derivative as,
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where Sρσ is the cross coupling coeff icient for the non-diagonal elements while the

diagonal elements include the effective ionisation coefficient,
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and αρ is the collisional-radiative  recombination coefficient,
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1 2.32

The  rate at which electrons recombine from the continuum onto a non-equili brium

level ρ is given by the recombination coeff icient αρ. The cross coupling coeff icients

describe the rate at which the non-equili brium levels, including the ground state, are

populated and depopulated within a colli sional-radiative frame work. The cross

coupling coeff icients can also be used to obtained the colli sional-radiative ionisation

coeff icients. These coeff icients represent the rate at which the non-equili brium levels

of the beam atoms are ionised and are obtained using the following expression,

S S S S
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ρ ρρ ρσ ρσ
σ ρσ

ρ

= − −
= +=

−

∑∑
11

1

2.33

In the case of a  deuterium beam, the only non-equili brium level is the ground

state. The 2s 2S level is not a non-equili brium level since there is strong 2s 2S → 2p
2P colli sional and field mixing. There are no cross coupling coeff icients, only the

single colli sional-radiative ionisation coeff icient. On the assumption that only the

ground state of the beam atoms is significantly populated, this coeff icient can be used

to describe the rate at which the beam atoms are ionised and is commonly referred to

as the effective beam stopping coeff icient. It is converted into an effective beam

stopping cross section by dividing through with the beam velocity. Using equation

2.18 the attenuation of a neutral deuterium beam can be calculated. The equili brium

populations of the excited states are simply evaluated relative to the ground state are

equation 2.28.

For a neutral helium beam, there are three non-equili brium levels. The ground

state  and the two metastable levels ( He(2 1S) and He(2 3S) ). There is a total of nine
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cross coupling coeff icients and three effective ionisation coeff icients. The Greek

subscripts of equation 2.31 indicate the initial and final states associated with each

coeff icient. The diagonal elements represent the total population loss rate from the

specified non-equili brium level. This total loss rate includes the loss rate to the

continuum as well as to the other remaining non-equili brium levels, whilst the

effective ionisation coeff icients describe the rate at which electrons are lost from

each of the non-equili brium levels to the continuum. To model the attenuation of the

beam we can no longer employ the simple expression of equation 2.18, a spatially

dependent solution of the following set of equations is required.
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where  N
n
2S+1

L
 is the population of the level specified by the quantum numbers n, S

and L. The contribution to the equili brium population of each excited state from each

non-equilibrium level is calculated using equation 2.28.

2.6 Previous theoretical studies

2.6.1 Modelling neutral deuterium beam

The first attempt at modelli ng the attenuation of a neutral deuterium beam, as it

entered into a tokamak plasma, was  reported by Riviere[33] in 1971. Riviere

employed a simple coronal type model to investigate the penetration depth of a beam

as a function of typical plasma parameters. The approach of using a simple coronal

type model was continued by many others[21, 34], even after the work of  Boley et.

al.[35]. Boley et. al. demonstrated that a colli sional-radiative description was

necessary to include all the atomic processes which contribute to ionising the beam
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neutrals. A series of coupled differential equations, which spanned from the ground

state to the Lorentz ionisation limit associated with the beam atoms, was employed to

model the effective ionisation of the beam neutrals and hence the beam attenuation.

Although a lot of information regarding the beam attenuation was now

available, littl e was known about the behaviour of the excited state population

structure until the work of  Summers[36] and the later efforts of  Spence[19] at JET

Joint Undertaking. Using a code which was originally based on the earlier work of

Burgess and Summers[37], a detailed description of the excited population structure

of the beam atoms was now readily available. Interest in the excited population

structure of the beam atoms grew and was later modelled by Korotkov[38]. Using the

method described by Boley et. al., Korotkov investigated both the excited population

structure and the attenuation of neutral deuterium beam atoms. The excited state

populations were calculated in what we describe as the bundled-n approximation. In

which the population of each principal quantum shell are evaluated.

Due to the increased availabilit y of high quality atomic data, the attenuation

calculations of Korotkov were later revised by Janev et. al[39]. Janev et. al.

conducted a more elaborate study of the beam attenuation and presented  analytical

fits to the effective beam stopping cross sections.

The present work develops from the original JET colli sional-radiative model

where we assemble a series of  statistical balance equations in the bundled-nS

approximation. The method of solution is complete and enables one to conduct a

detailed study of the effective stopping coeff icients as well as the excited state

population structure. The code systematically accesses the most recent fundamental

atomic data and employs a wide variety of  formulae to generate the cross sections

for transitions where there is no fundamental data available. We do not present our

data in terms of analytical fits. ADAS as a matter of policy archives exact numerical

data. The analytical fits of Janev et. al. are unsound in the low and high density

asymptotic limits of the effective beam stopping cross sections. As an example we

show in figure 2.13, a comparison between the results obtained in this work and the

analytical fits of Janev et. al. as a function of beam energy
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Figure 2.13  Beam stopping cross sections Vs energy for a pure H+ plasma. Comparison between the

analytical fits of Janev et. al.[39] and the results obtained from this work. The densities  where selected

to ill ustrate the difference at the coronal limit ( 1.0 x 108 cm-3 ) and near the high density regime ( 1.0

x 1014 cm-3 ).

2.6.2 Modelling a neutral helium beam

The application of a neutral helium beam as an edge or as a core diagnostic needs

slightly different modelli ng approaches. As an edge diagnostic, a slow beam is

employed to penetrate into the periphery of the plasma where the conditions are

usually such that a spatially dependent solution of the statistical balance equations is

required[12, 13]. For a fast neutral helium beam as a core diagnostic, the excited

levels, with the exception of the metastables, have reached local equili brium. There

had been various attempts to model the attenuation and excited population structure

of fast neutral helium beams[38,40]. However, the most significant contribution was

due to the later work of Korotkov[41]. Using a series of coupled equations, Korotkov

investigated the behaviour of the excited population structure and the beam

attenuation under the assumption that the metastable levels had relaxed and reached

equili brium. The excited populations were calculated in what we describe as the

bundled-nlSL approximation. The bundled-nlSL approximation involves evaluating
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the population for each of the angular sub-states for the low lying levels, while the

population of the higher levels are calculated in a bundled-nS approximation.

An attempt to include the influence of the non-equili brium metastable levels

on the population structure and attenuation was undertaken by a combined effort of

Korotkov and Janev[42]. In addition to using improved fundamental data, Korotkov

et. al., introduced an approximate method to describe the influence of the non-

equilibrium levels.

In this work we model the attenuation and population structure of a neutral

helium beam by assembling the complete set of coupled equations in the bundled-

nlSL approximation. The method of solution here however is more general and

complete since we do not assume that the metastable level populations have relaxed.

In these circumstances, the attenuation of the beam is no longer characterised by a

single stopping coeff icient. Rather it is described by a coupled set of three equations

linked by colli sional-radiative cross coupling coeff icients. These cross coupling

coeff icients are also calculated in the full bundled-nlSL model. We give considerable

attention to using the most recent fundamental data and as for deuterium employ a

variety of approximate methods to generate cross sections for transitions where there

is no fundamental data available.
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3.0  Collisional-radiative models for beam attenuation and emission

3.1   Introduction

In this chapter we discuss the formulation and computational implementation of the

bundled-nS deuterium beam model within the context of ADAS. The bundled-nlSL

helium beam model is also presented in a similar manner. It should be noted that the

bundled-nS model was originally written in FORTRAN by Burgess and

Summers[37] and was later modified by Spence[19]. In this work our main

contribution to the bundled-nS model has been the optimising and validation of the

program. Then we deployed it to model the attenuation and emission associated with

the neutral deuterium beams at JET, see chapter 5.0. The bundled-nlSL model was

extensively developed during the course of this work for application to helium

beams, although the code had its origin in an existing program designed to model the

excited population structure of atoms in an astrophysical plasma[43]. The bundled-

nlSL is also written in FORTRAN. We have also developed interactive programs

which interrogate and archive the output from each of these colli sional-radiative

models. The details of these programs are also discussed in this chapter.

3.2    The bundled-nS model for a deuterium beam

The bundled-nS model evaluates the excited population structure of neutral

deuterium. The model is a very many n-shell treatment, in which the populations of a

representative set of principal quantum shells are calculated since matrix

condensation techniques are used to render the problem tractable[37]. Due to the near

energy degeneracy of the l-substates of deuterium, the bundled-nS approximation, in

even low density tokamak plasmas, suff ices. Even in circumstances, where the

degeneracy is partially removed ( for example by the motional Stark perturbation ), to

a good approximation the population of the sub-states for a given n are statistical at

tokamak densities. Our model is general in that the deuterium atoms can either be in

thermal plasma, which may possibly be traversed by a neutral beam, or be the main

constituents of a beam. In the case of deuterium atoms in a thermal plasma, the

excited population structure and colli sional-radiative recombination and ionisation

coeff icients are evaluated. In the present work we are concerned with deuterium
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atoms in a beam, therefore the quantities of interest include only the excited

population structure and the colli sional-radiative ionisation coeff icients. The

effective ionisation coeff icient, as mentioned earlier, represents the rate at which the

beam atoms are ionised as the beam traverses the plasma and is commonly referred to

as the effective beam stopping coefficient.

The statistical balance equations of the bundled-nS model include all the

processes which contribute to populating and depopulating each principal quantum

shell. These take the form shown below.
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for i =1, 2 , 3, …

Note the presence of a radiation field. This is viewed here as a possible external

radiation field penetrating the plasma. Although the external radiation field on the

population structure is treated correctly in atomic terms it is actually for the present

beam studies an artificial device for population modification. This is discussed in

section 3.2.5. There is no actual external radiation field present in our JET studies.

U(ν)Bi→i’ corresponds to the contribution due to photo-excitation ( i’ > i ) and

stimulated emission ( i’ < i ). The quantity ∫U(ν)Bκ→idκ is the contribution due to

stimulated recombination and ∫U(ν)Bi→κdκ is the  photo ionisation rate. The

influence of plasma impurities are also included in the statistical balance equations.

The protons1 contained in the plasma are treated as special plasma species while the

                                                          
1 We use the term ‘protons’ to refer to any of the isotopes of  fully stripped hydrogen.
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remaining ions are treated as ‘ impurities’ . The symbol n(imp) represents the total

effective impurity density. In general several impurity species may be involved in

colli sionally inducing transitions. If we let the set of impurity charges and fractions

be { z(imp)
0i, f

(imp)
i; i=1,..I }. Then the total effective impurity density and the effective

charge Zeff, as evaluated by the bundled-nS model is,

( )n n n z fimp
e p i

imp
i

imp

i

I
( ) ( ) ( )= −





=

∑ 0
1

3.2

( )Z n n z f neff p
imp

i
imp

i
imp

i

I

e= +




=

∑( ) ( ) ( )
0

2

1

3.3

and the number density of each individual impurity ion is simply,

n n fi
imp imp

i
imp( ) ( ) ( )= 3.4

In the case of a single impurity, which is frequently used as an effective impurity, it is

convenient to alter the definition. The effective charge for a single impurity and its

number density is now evaluated as,

( ) ( )z Z n n n nimp
eff e p e p0

( ) = − − 3.5

( )n n n zimp
e p

imp( ) ( )= − 0 3.6

The bundled-nS model employs a wide range of approximate methods to

evaluate  the rate coeff icients associated with the atomic processes which are

included in the statistical balance equations. For convenience it is assumed that he

electron and ion temperature are identical. We  should point out that the beam atoms

are in a purely ionising regime, therefore it is unnecessary to include recombining

process such as radiative recombination ( αRR ) and charge exchange ( α.CX ) . These

processes have only been included due to the general nature of the model. The

program also access a collection of databases which contain more refined atomic data

which is used to substitute the approximate methods where ever possible.
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In the following sub-sections we briefly summarise the approximate methods

and indicate the extent to which fundamental atomic data is used. A detailed account

of the former is given by Spence[19]. We also outline the method which is adopted to

solve the statistical balance equations.

3.2.1 Radiative atomic processes

We begin by first considering the spontaneous emission coeff icient, which describes

the rate at which an electron naturally decays from the upper level n to the lower

level n’, this is calculated using the expression,

( )A
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z g
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                             3.7

where gI
n,n’ is the bound-bound Gaunt factor[37], α is the fine structure constant, a0 is

the first Bohr orbit radius and z0 is the nuclear charge of the beam atom. The

spontaneous emission coeff icient is then used to obtain expressions for the stimulated

emission and photo-excitation coeff icient.  The Einstein B-values can be obtained

using the following relations,
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Therefore the stimulated emission coefficient is,
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and the photo-excitation coefficient,
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where U(ν) is the energy density, Tr is the temperature of the radiation field and W is

a dilution factor. The radiative recombination coeff icient is evaluated using the

following equation,

α
π α
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where gII
n,n’ is the bound-free Gaunt factor[37] and x =hν/kTr. The atomic process of

photo-ionisation is now of interest . This coeff icient is evaluated using the following

expression,
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and finally, the stimulated radiative recombination is given as,
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3.2.2 Collisional atomic processes

There are three methods which the bundled-nS model can use to evaluate  electron

impact excitation rates. These include the method of Van Regemorter[44], the impact

parameter approximation[37] and the prescription by Percival and Richards[45]. The

method of Van Regemorter involves describing the electron excitation rate

coefficients with effective P-factors. The electron impact excitation is then given as,
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where P(∆En,n’/kTe ) is the Van Regemorter P-factor and  ∆En,n’  is the transition

energy between the levels n and n’ . The corresponding de-excitation rate is then give

as,
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The basic expression to obtain the electron impact excitation cross-sections using the

impact parameter method is,

σ πn n n nP bdb' '→ →

∞

= ∫2
0

3.16

where b is the impact parameter and Pn’→n is the probabilit y of the target electron

being excited from the level n’ , to the upper level n. As discussed in detail by

Burgess and Summers[37], the probabilit y Pn’→n , can be evaluated using time

dependent perturbation theory. However perturbation theory is only valid for weak

coupling i.e. at large impact parameters. Therefore Burgess and Summers have

derived expression according to whether the impact parameter is large enough to be

considered for weak coupling or small enough for strong coupling. To avoid

digressing we simply quote their results. In the case of weak coupling the excitation

cross section  is,
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and for strong coupling the excitation cross section described,
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A detailed description of each equation can be found in the [37]. Finally, the

prescription of Percival and Richards[45], which is based on a combination of semi-

classical methods and experimental data, yields the following expression,

( )σ
π

n n
Hn I a

z E
ADL FGH'→ = +

4
0
2

0
2         3.19

the details of which can be found in [45]. The corresponding colli sional de-excitation

cross sections for both the impact parameter and the latter method are calculated

using the principle of detailed balance.

If we now consider electron impact ionisation. There is only one approximate

method which is available for use in the bundled-nS model. This is the Exchange

Classical Impact Parameter ( ECIP ) method of Burgess[46]. The electron impact

ionisation rate from the level denoted by the principal quantum number n is given as,
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where ξ= ( Wn -In )/ kTe  and  G is defined as,
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Wn is the initial energy of the incident electron and IIP is the contribution due to

impact parameter[37]. This expression is then used to obtain the three body

recombination rate coefficient,
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We now consider the methods which are employed to evaluate the ion impact

excitation cross-sections. There are three different methods which are available for

use. These include the impact parameter method[37], the semi-empirical formula of

Lodge et. al.[47], and the two state approximation of  Vainshtein et. al.[48]. The

impact parameter method involves similar expressions to equations 3.17 and 3.18. A

detailed description is given by Burgess and Summers[37]. The semi-empirical

formula of Lodge et. al is based on a combination of semi-classical methods and

experimental data. The resultant formula, for which the details can be found in [47]

is,

( )σ
π
εn n

n a
ADL FGH'→ = +

4
0
2

3.23

The two state approximation of Vainshtein et. al.[48] describes the behaviour of ion

impact excitation with the following equation,

( ) ( )σ π
λ

β βn n v
I' exp→ = 



 −2 2 2 3.24

where I(β) is calculated from a definite integral and λ is related to the oscill ator

strength[48]. The corresponding de-excitation cross sections for each method are also

obtained using the principle of detailed balance. The last approximate method

concerns ion impact ionisation. The bundled-nS model employs the binary encounter

formula of Percival and Richards[49].

3.2.3 Beam thermal rate coefficients

The approximate methods employed by the bundled-nS model, with the exception of

the method of Van Regemorter, evaluates the cross sections  which described the

behaviour of the colli sional processes. However to assemble the statistical balance

equations we must convert the cross sections into beam-thermal rate coefficients.

The  colli sion between two particles in a thermal plasma is characterised by

their relative velocity. The associated rate coefficient is defined as,
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( ) ( ) ( ) ( )v v v f v f v v dv dvr r r p t r p t
vv

σ σ=
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3.25

where vr is the relative velocity between the target and the projectile. The quantities

f(vt) and f(vp) are the corresponding velocity distributions for each particle. In the

present work the projectiles are the beam atoms, which have a known velocity, and

the target particles are the thermal ions contained in the plasma. Therefore the rate

coefficient for the collision between the beam neutrals and target ions is,

( ) ( )v v v f v dvr r r t t
v

σ σ=
∞

∫
min

3.26

The relative velocity is defined as vr = | vp - vt |, which is expressed as,

v v v v v v vr p t p t p t= − = + +2 2 2 cosϑ 3.27

where ϑ is defined as the angle between the projectile and the target. The beam-

thermal rate coefficient as evaluated in the bundled-nS model is then defined as,

( ) ( ) ( )v v v v f v dv dr r r r t
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It is of interest to point out that electrons in the plasma are moving with velocities

much greater than that of the beam atoms. Therefore the rate coeff icients associated

with electron collisions are effectively  independent of the beam velocity.

3.2.4 Fundamental atomic data

The supplementary data which is utili sed by the bundled-nS model is now

considered. There are three main databases which contain electron impact excitation,

electron impact ionisation  and ion-atom colli sion data respectively. If we first

concern ourselves with electron impact excitation database. This database contains

electron impact excitation coeff icients which are stored in the form of effective
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colli sion strengths[29]. The effective colli sion strengths are tabulated for transitions

up to the n=5 shell . This data is periodically updated and is a combination of both

theoretical and experimental data. During the course of this work the contents of the

database was based on the calculations of Sampson and co-workers [50,51,52] and

the data of Callaway[53]. This database also contains a compilation of spontaneous

emission coeff icients, the details of which can be found in [54]. Turning our attention

to the electron impact ionisation database. This database contains Maxwell averaged

rate coeff icients which are periodically updated. The contents of the database during

this work  was based on the data reported by Bell et. al.[55]. The last database of

concern, which is the largest by far, contains a wide range of ion-atom colli sion data.

The database contains cross sections for charge exchange and ion  impact ionisation

from the ground and excited states up to the n=5 shell . Ion impact excitation data up

to the n=5 shell i s also included. The data is stored in the format of raw cross sections

and encompasses the reactions mentioned for all the impurity species up to the first

period. A detailed review of this database can be found in appendix A.

3.2.5 Method of solution

Due to the generalised nature of the bundled-nS model, rather than simply solving for

the excited populations, an alternative approach is adopted. There are three basic

driving mechanisms which are responsible for populating the excited levels of

deuterium. These include charge exchange recombination, excitation from the ground

state and recombination of free electrons. The model solves the statistical balance

equations for each of the individual contributions associated with every principal

quantum shell of interest. To obtain the individual contributions we start from the

statistical balance equation written in matrix notation,

v
dN

dx
n n r C Nb

i
e i ij j

j

= −+ ∑ 3.29

If we now re-write this expression in the form,
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v
dN
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n n n n C Nb

i
e i b i
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= ℜ + −+ + ∑α 3.30

where ℜ i is defined as,

( )ℜ = + + →∫i i
RR

e i in U B dα α ν κκ
( )3 3.31

We can now re-write expression 3.30 in terms of the quasi-static and non-equili brium

levels using the notation of chapter 2.0,
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i
e i b i

CX
ij j

eq
i

m

j m

= ℜ + − −+ +
=>

∑∑α σ σ
σ 1

3.32

The expression for the equilibrium populations is,

N n n R n n G E Nj
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3.33

which distinguishes the different driving mechanisms,

R Cj ji i
i m
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>
∑ 1 3.34

G Cj ji i
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>
∑ 1α 3.35

E C Cji i
i m

σ
σ= − −

>
∑ 1 3.36

Rj, Gj, and Eσ are respectively the contributions which populate the excited levels of

the beam atoms due to recombination, charge exchange and excitation from the non-

equili brium levels. For deuterium the number of non-equili brium levels is one,

therefore equation 3.33 now reads as,

N n n R n n G E Nj
eq

e j b j= + ++ +
1

1 3.37

Rather than solving this equation directly it is more convenient to solve for the ‘bn-

factors’ which are defined using the modified Saha-Boltzmann equation,
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The bn factors describe the deviation from thermodynamic equili brium at which they

should be equal to a value of one. If we substitute the modified Saha-Boltzmann

equation into equation 3.37  we arrive at,
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where F1
(n), F

2
(n) and F3

(n) are respectively the contributions which populate the level

n due to excitation from the ground, recombination and charge exchange. The

quantity nb is the beam density and N1 is the population of the ground state of the

beam neutrals. In the present context our interest is with the F1
(n) quantity, since this

gives the contribution which populates the excited levels of the beam atoms from

their ground state.

We have a computational algorithm for distinguishing these contributions, we

first fix the beam density to zero, this sets the contribution due to charge exchange to

zero. We then apply a synthetic radiation field which depopulates the ground state

due to the inclusion of  photo-ionisation in the statistical balance equations. The  F2
(n)

recombination contribution can be calculated in isolation. If we then switch off the

radiation field and keep the beam density as zero we can then evaluate the F1
(n)

contribution. Finally, if the radiation field is set to zero and the beam density is not

equally to zero the F3(n) contribution can be calculated.

The quantities which are tabulated as output from the model include the bn,

F1
(n), F

2
(n) and F3

(n) components. The solution of the Saha-Boltzmann equation in the

form the Nn/bn×n+ is also tabulated along with the effective beam stopping

coeff icients. Therefore the excited state population relative to the ground state can be

obtained from the output since,
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which allows us to define the effective beam emission coeff icient for the transition n

→ n’ as,

( )q
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n
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where An→n’ is the transition probabilit y. The effective beam emission coeff icient is

the number of photons emitted per unit volume per second. The beam emission

coeff icient is employed to recover the neutral beam density from the Dα emission

from the excited beam atoms in experimental analysis, see chapter 5.0.

3.3 The bundled-nlSL model for a helium beam

The bundled-nlSL model has been designed to operate in a similar manner to the

bundled-nS model. The bundled-nlSL models calculates the excited population

structure of  helium atoms either in a optically thin thermal plasma or in a mono-

energetic beam penetrating into a plasma. It is an nl-spin resolved model which

calculates the populations of the l-substates from the ground state up to an arbitrary

principal quantum number, above which a bundled-nS treatment is then adopted, see

figure 3.1.

Figure 3.1   Schematic ill ustration of the bundled-nlSL model. The low levels are calculated in an nl-

resolved picture up to an arbitrary principal quantum shell , above which a bundled-nS treatment is

adopted.
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The switching of principal quantum numbers is such that for it and higher principal

quantum shells l-redistribution is effectively complete. The ground state and the He(2
1S) and He(2 3S) metastables are treated as non-equili brium levels. Therefore the

equili brium populations of the excited states are calculated relative to each non-

equili brium level. The statistical balance equations are similar to those of the

bundled-nS model but contain additional processes which were not applicable in the

nS-resolved picture. These include spin changing electron colli sions and colli sional

transitions between degenerate levels. The statistical balance equations written in

matrix notation are as before,

v
dN

dx
n n C Nb

i
e i ij j

j

= ℑ − /+ ∑ 3.42

for i = 1, 2, 3….

However ℑ i now includes recombining terms to both the singlet and the triplet

excited levels and the  collisional-radiative matrix is of the form,
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where the top left hand partition concerns the atomic rates associated with the pure

singlet spin system. The top right hand partition includes the atomic rates which

describe the colli sionally induced transitions from the triplet to singlet spin system (

electron exchange colli sions ). The bottom right hand partition includes the atomic

rates for a pure triplet spin system and the associated left hand partition contains the

spin changing contribution from the singlet to the triplet spin system. The diagonal

elements of the colli sional-radiative matrix describes the total loss rate from each

level as previously.

The approximate methods used to evaluate the cross-sections and rate

coeff icients in the bundled-nS model are relevant for hydrogenic and non-hydrogenic
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ions in the bundled-nlSL model but require a specification of how they are to be

fractionated over l-substates. In the following sub-sections we summarise the

differences in the way they have been implemented. We also discuss the approximate

methods employed for the atomic processes which were not applicable to the

bundled-nS model. The bundled-nlSL model also accesses several databases in the

same manner as the bundled-nS model, and we detail which fundamental atomic data

is used. Finally, we outline the method of solving the statistical balance equations

when there are three non-equilibrium levels.

3.3.1 Radiative processes

As mentioned earlier, the approximate methods employed in the bundled-nS model

can be used for hydrogenic and non-hydrogenic ions in the bundled-nlSL model.

Where appropriate however exact energy levels and statistical weights for helium are

adopted. Exact energy levels for the low levels in the bundled-nlSL model are

expanded over the complete manifold of levels using the quantum defect method for

each spin system. That is the  quantum defect is calculated using a series expansion.

µ = + + +a a E a E a E1 2 1 3 2
2

4 3
3 3.44

where the energy levels E1, E2 and E3 are the exact values which are entered as input.

This is repeated for the s, p, and d l-series and for both spin systems with the energy

levels then calculated from,

( )
E

z I

n
nl

H=
−
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2

2µ
3.45

Higher l-series have negligible quantum defects. The statistical weights depend on

whether we are concerned with levels which are part of the low level nlSL-resolved

treatment or the high level bundled-nS picture. If we define n2 as the arbitrary

principal quantum shell which separates the nlSL and nS resolved treatment. The

statistical weights are defined as,

( )( )n n i nlSL w L Si< ≡ = + +2 2 1 2 1 3.46

n n i nS w n L Si p p> ≡ = + +2
2 2 1 2 1( )( ) 3.47
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where Lp and Sp are the total angular and spin quantum numbers associated with the

parent ion. We also require  nl-resolved bound-bound and bound-free Gaunt factors

to evaluate quantities such as the spontaneous emission and the radiative

recombination coeff icient. The expressions used to evaluated these factors are of

considerable complexity and a detailed account can be found  in the work of

Summers[43].

3.3.2 Collisional  processes

The expressions which were used for the bundled-nS model form a starting point for

the bundled-nlSL model. However there are several additional processes which have

to be taken into account which were not applicable in the nS-resolved picture. These

processes include ion and electron colli sions between degenerate levels and electron

driven spin changing colli sions. The approximate methods to evaluate the rate

coeff icients for each of these processes is discussed in detail by Summers[43]. We

simply quote the results here. For degenerate colli sions due to electrons and ions, the

rate coefficient is given as,
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where m and T are respectively the mass and temperature of the colli ding particle.

The quantity R2
c is described as a cut-off to ensure the colli sion cross sections have

finite values. The expression for spin changing transitions between each spin system

is,
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where ηnl
n’ l’ is an overlap fractional function. A detailed account of each expression

can also be found in the work of Spence[19].
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3.3.3 Fundamental atomic data

The supplementary data is stored in a similar format to the data used for the bundled-

nS model. There are three databases which contain electron impact excitation,

electron impact ionisation and ion-atom colli sion data respectively. If we first

consider the electron impact excitation database. This database contains excitation

rates which have been stored in the form of effective colli sion strengths for dipole

and non-dipole transitions between all the resolved levels up to the n=4 shell . The

contents of the database is primarily from the compilation of de Heer[56] but

includes  the work of many others[54]. Also included in this database is a

compilation of spontaneous emission coeff icients, the details of which can also be

found in [54]. Focusing on the electron impact ionisation database. This database

contains Maxwell averaged electron impact ionisation rates associated with the

ground state and the He(2 1S) and He(2 3S) metastables. This data is based on the

work of Bell et. al.[55] and Fujimoto[57]. The ion-atom database, which is the

largest database, contains cross-sections for charge exchange, ion impact excitation

and ionisation from the ground and excited states of the singlet and triplet spin

system. For this work the data used was based on a compilation by Summers[54].

3.3.4 Method of solution

In the same manner as the bundled-nS model, the bundled-nlSL model solves for the

effective contributions. As shown earlier in section 3.2.5, the quasi-static populations

can be obtained using the expression,

N n n R n n G E Nj
eq

e j b j

m

= + ++ +
=

∑ σ
σ

σ 1

3.49

where in this case the number of non-equili brium levels  is three. Using the modified

Saha-Boltzmann equation  which is now written as,
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where w+ is the statistical weight of the parent ion,
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w L Sp p+ = + +( )( )2 1 2 1 3.51

Equation 3.49 can be re-written in terms of the b
nl
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factors,
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The quantities FI(nlS) , FII (nlS) and FIII (nlS) separate the effective excitation

contributions which populate the excited levels by driving from the ground state and

the He(2 1S) and He(2 3S) metastables respectively . The contribution to populating

the excited levels due to recombination from the continuum is  F2
(nlS). It should be

noted that the charge exchange F3
(nlS) contribution had been omitted from equation

3.52, since we have not incorporated charge exchange data for the thermal plasma

atom case. The solution of equation 3.52 is achieved by  a combination of switching

on and off a synthetic radiation field in a similar manner as in the bundled-nS model.

The tabulated output from the model contains the excitation contributions (

FI, FII, FIII ) and the solution of the Saha-Boltzmann equation in the form

N
nl

2S+1
L
/b

nl
2S+1

L
×n+. Also included are the effective cross coupling coeff icients which

are calculated using the expression discussed in chapter 2.0,
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The equili brium populations relative to the ground state and each metastable are then

obtained from the tabulated output using the following relations.
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The effective beam emission coeff icients relative to each metastable can then be

defined in a similar manner as in section 3.2.5 .

3.4 Computational implementation and validation

3.4.1 Implementation of the models within ADAS

The bundled-nS model has been implemented into the ADAS system as ADAS310.

We summarise the main features of ADAS310 here and further details can be found

in [26]. As with all ADAS programs, there are three main IDL compound widgets

which serve as the user interface. The input, the main processing and the output

screen. We focus our attention here on the main processing screen of ADAS310, see

figure 3.2.

Figure 3.2   Snapshot of the main processing screen of ADAS310.
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The processing screen consists of several panels which allow the user to select and

enter the required input parameters. The bottom left hand panel concerns the

selection of plasma impurity ions and the range of principal quantum shells for which

the excited state population is to be evaluated. The panel on the bottom right allows

the user to enter the required temperature, density and neutral beam energy range.

The panel at the top is of most interest, since it is in this area where the user can

select the different approximate methods to evaluate the rate coeff icients for the

atomic processes included in the statistical balance equations. As can be seen in the

top panel of f igure 3.2, there are a series of toggle buttons. If the user activates the

button which is labelled ‘Switch I’, an additional panel will appear, see figure 3.3.

Figure 3.3   Snap shot of the panel which appears when the button labelled ‘Switch I’ is activated.

This panel allows the user to select the method for evaluating the electron impact

excitation cross sections and hence the rate coeff icients. The panel also contains the

switch which allows the user to access the collection of fundamental atomic

databases. If this switch is activated the data contained in each database is extracted

and is used to replace the values obtained from the approximate methods. In the

context of ADAS, each of the databases are stored in their own specific ADAS data

file format ( adf ). The database containing electron impact excitation rates is

archived in the file format known as adf04. The electron impact ionisation data is

archived according to the prescription of the file format adf07, while the ion-atom
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database is stored in the file format of adf02. A detail description of each of the file

formats can also be found in [26].

If the user now activates the button labelled ‘switch II ’ , a second panel will

appear, see figure 3.4.

Figure 3.4   Snapshot of the panel which appears when the button labelled ‘Switch II’ is activated.

This panel allows the user to choose between the different approximate methods

which are employed to evaluate ion impact excitation cross-sections. The panel also

contains switches which allow the user to turn off the ion colli sions as well as to

form the ion-atom rate coeff icients without taking into account the beam velocity.

The latter being equivalent to switching the beam off and modelli ng the excited state

population structure of deuterium in a thermal plasma.

After the user has finalised their selection, ADAS310 then loops around the

specified range of temperatures, densities and neutral beam energies. In each case

assembling the statistical balance equations and solving for the equili brium

populations and effective beam stopping coeff icients. The main output, which is in

the ADAS adf26 type format, contains tables of the F’s, bn’s and the effective beam

stopping coeff icients. We show in table 3.1 the typical output from ADAS310 for a

relatively simple case.
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Table 3.1    Typical output from ADAS310 for a pure D+ plasma. The output from ADAS310 is

archived according to the file format of adf26. A summary of the input parameters is specified at the

bottom of the tabulated output.

It is common practice to generate effective stopping and emission coeff icients for a

wide range of plasma parameters. The plasma parameters being the temperature,

density and neutral beam energy. The typical output from ADAS310 for a single

impurity species is approximately 3.5 Mb and consists of a series of tables as shown

in table 3.1. We then have to extract the effective stopping and emission coeff icients

and store them in a suitable format. To automate this process, during the course of

this work we have developed an interactive program which is employed to

 TABLE FOR ION PRINCIPAL QUANTUM SHELL POPULATIONS IN THERMAL PLASMA

                             Z0 = 1.00E+00                Z1 = 1.00E+00

      TRAD = 1.00E+08 K        TE = 2.32E+07 K                  TP = 2.32E+07 K
             W = 0.00E+00           NE = 1.00E+12 CM-3           NP = 1.00E+12 CM-3

      EH = 5.00E+03 EV/AMU   NH = 1.00E+07 CM-3        NH/NE = 1.00E-05   FLUX = 9.78E+14 CM-2 SEC-1

 CX OFF : N1/N+ = 1.16108E-09  RECOMB COEFF = 1.42279E-16 CM+3 SEC-1   IONIZ COEFF = 1.22541E-07 CM+3 SEC-1

 CX ON  : N1/N+ = 4.76864E-05  RECOMB COEFF = 5.84353E-12 CM+3 SEC-1  IONIZ COEFF = 1.22541E-07 CM+3 SEC-1

    I    N                    F1                     F2                     F3               B(CHECK)      B(ACTUAL)    NN/(BN*N+)
    1    1             0.00000E+00    3.11171E+05    1.27797E+15    1.27804E+10    1.27804E+10    3.73131E-15
    2    2             3.60194E+09    3.49143E+00    7.13883E+10    8.85650E+05    8.85650E+05    1.48493E-14
    3    3             1.27748E+09    2.34706E+00    4.34908E+10    4.95829E+05    4.95829E+05    3.33793E-14
    4    4             5.08493E+08    1.60159E+00    5.95132E+09    8.37630E+04    8.37630E+04    5.93213E-14
    5    5             1.36343E+08    1.17348E+00    8.63307E+08    1.51359E+04    1.51359E+04    9.26753E-14
    6    6             3.94663E+07    1.05453E+00    1.63609E+08    3.51915E+03    3.51915E+03    1.33441E-13
    7    7             1.40732E+07    1.01994E+00    4.03570E+07    1.07569E+03    1.07569E+03    1.81619E-13
    8    8             5.82632E+06    1.00836E+00    1.22062E+07    4.00906E+02    4.00906E+02    2.37209E-13
    9    9             2.80157E+06    1.00404E+00    4.43355E+06    1.78936E+02    1.78936E+02    3.00211E-13
   10   10           1.61959E+06    1.00234E+00    1.97951E+06    9.80297E+01    9.80297E+01    3.70626E-13
   11   11           1.23372E+06    1.00178E+00    1.21778E+06    7.20110E+01    7.20110E+01    4.48452E-13
   12   12           8.60349E+05    1.00124E+00    7.15872E+05    4.91869E+01    4.91869E+01    5.33690E-13
   13   15           2.76860E+05    1.00040E+00    1.61784E+05    1.58207E+01    1.58207E+01    8.33876E-13
   14   20           5.23029E+04    1.00007E+00    2.37014E+04    3.73122E+00    3.73122E+00    1.48243E-12
   15   30           6.82995E+03    1.00001E+00    2.84341E+03    1.35414E+00    1.35414E+00    3.33543E-12
   16   40           1.54437E+03    1.00000E+00    6.25293E+02    1.07990E+00    1.07990E+00    5.92963E-12
   17   50           4.75304E+02    1.00000E+00    1.89911E+02    1.02457E+00    1.02457E+00    9.26503E-12
   18   60           1.75921E+02    1.00000E+00    6.97467E+01    1.00909E+00    1.00909E+00    1.33416E-11
   19   70           7.19489E+01    1.00000E+00    2.83621E+01    1.00371E+00    1.00371E+00    1.81594E-11
   20   80           2.98631E+01    1.00000E+00    1.16986E+01    1.00154E+00    1.00154E+00    2.37184E-11
   21   90           1.07568E+01    1.00000E+00    4.16035E+00    1.00055E+00    1.00055E+00    3.00186E-11
   22  100          1.27021E+00    1.00000E+00    4.26867E-01    1.00006E+00    1.00006E+00    3.70601E-11

                                               BN = F1*(N1/N+) + F2 + F3*(NH/NE)
                                               N1 = POPULATION OF GROUND STATE OF ION
                                               N+ = POPULATION OF GROUND STATE OF NEXT IONISATION STAGE
                                               NN = POPULATION OF PRINCIPAL QUANTUM SHELL N OF ION
                                               BN = SAHA-BOLTZMANN FACTOR FOR PRINCIPAL QUANTUM SHELL N
                                               EH = NEUTRAL HYDROGEN BEAM ENERGY
                                                W = RADIATION DILUTION FACTOR
                                               Z0 = NUCLEAR CHARGE
                                               Z1 = ION CHARGE+1

 NIP   =  0     INTD  =  3     IPRS  =  1     ILOW  =  1     IONIP =  1     NIONIP=  2     ILPRS =  1     IVDISP=  1
 ZEFF  = 1.0    TS  =  1.00D+08     W   =  0.00D+00     CION  =1.0     CPY =1.0     W1  =  1.00D+08     ZIMP  =  .0 (  0.00D+00)
1
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interrogate the adf26 type files. The program offers the user the choice of whether to

extract effective stopping or effective emission coeff icients for an arbitrary transition

from the adf26 type file. This program is known as ADAS312 and we summarise the

main features here, a more detailed description can be found in [58]. We show in

figure 3.5 the main processing screen of ADAS312.

Figure 3.5   Snap shot of the main processing screen of ADAS312.

The processing screen consist of several panels. The panel in the middle displays the

parameter range over which the contents of the adf26 type file has been evaluated. It

is also within this panel that the user selects whether effective stopping or emission

coeff icients are to be extracted from the adf26 type file. If the user activates the beam

emission button, the panel at the bottom is sensitised. This panel allows the user to

enter the upper and lower principal quantum number for the transition corresponding

to  the effective beam emission coeff icient which is required. If the user activates the

beam stopping button, the bottom panel is de-sensitised which prevents the user

entering any information. Once the user has finalised their selection and activated the

button labelled ‘Done’ , the user is presented with the output screen. This screen

offers  several choices, the user can choose to save the extracted data to file or to
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view the data as a surface plot or even both. If  we consider the scenario where both

of the options have been selected. The user is then presented with a graphical screen

which contains a surface plot of the selected data, see figure 3.6.

Figure 3.6   Snapshot of the graphical screen of ADAS312.

The graphical screen allows the user to interactively inspect the data by being able to

zoom in or out or by rotating the surface plot through various angles. If the user

activates the ‘print’ button the contents of the graphics window will t hen be written

to an appropriate graphics  file. Once the user returns back to the output screen by

activating the ‘done’ button, the selected data is then written to file. The effective

stopping and emission coeff icients are respectively archived according to the

specifications of the ADAS adf21 and adf22 type files. We show in table 3.2 an

example of an adf21 type file which contains effective stopping coeff icients for a

pure D+ plasma.
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Table 3.2  Example of an adf21 type file which contains effective stopping coeff icients for a pure D+

plasma.

The format of the adf22 type files are identical to the structure shown in table 3.2 but

contain effective emission coeff icients. In both of the file formats, the effective

coeff icients are stored as a one and two dimensional grids tuned for rapid

experimental analysis, see chapter 4.0.

The bundled-nlSL model is intended to be placed into the ADAS system as

ADAS311 in the near future. At the moment it is an off line program which is driven

by an ASCII file containing all the relevant input parameters. The output file from the

program, which is also classified as an ADAS adf26 type file, contains the F’s and

    1 /SCREF=1.081E-07 /SPEC=H  /DATE=09/04/98 /CODE=ADAS312
--------------------------------------------------------------------------------
   25   25 /TREF=2.000E+03
--------------------------------------------------------------------------------
 5.000E+03 1.000E+04 1.500E+04 2.000E+04 2.500E+04 3.000E+04 3.500E+04 4.000E+04
 4.500E+04 5.000E+04 5.500E+04 6.000E+04 6.500E+04 7.000E+04 7.500E+04 8.000E+04
 8.500E+04 9.000E+04 9.500E+04 1.000E+05 1.050E+05 1.100E+05 1.150E+05 1.200E+05
 1.250E+05
 1.000E+12 2.000E+12 3.000E+12 5.000E+12 6.000E+12 7.000E+12 8.000E+12 9.000E+12
 1.000E+13 2.000E+13 3.000E+13 5.000E+13 6.000E+13 7.000E+13 8.000E+13 9.000E+13
 1.000E+14 2.000E+14 3.000E+14 5.000E+14 6.000E+14 7.000E+14 8.000E+14 9.000E+14
 1.000E+15
--------------------------------------------------------------------------------
 1.225E-07 1.246E-07 1.229E-07 1.198E-07 1.160E-07 1.120E-07 1.079E-07 1.038E-07
 9.981E-08 9.607E-08 9.272E-08 8.966E-08 8.704E-08 8.473E-08 8.274E-08 8.104E-08
 7.953E-08 7.823E-08 7.706E-08 7.601E-08 7.506E-08 7.418E-08 7.338E-08 7.264E-08
 7.195E-08
       .           .                .           .           .           .           .            .
       .           .                .           .           .           .           .            .
       .           .                .           .           .           .           .            .
       .           .                .           .           .           .           .            .

 1.450E-07 1.505E-07 1.523E-07 1.529E-07 1.528E-07 1.523E-07 1.514E-07 1.502E-07
 1.488E-07 1.472E-07 1.456E-07 1.439E-07 1.425E-07 1.411E-07 1.399E-07 1.388E-07
 1.378E-07 1.369E-07 1.361E-07 1.353E-07 1.345E-07 1.337E-07 1.330E-07 1.323E-07
 1.316E-07
--------------------------------------------------------------------------------
   20 /EREF=6.500E+04 /NREF=6.000E+13
--------------------------------------------------------------------------------
 1.000E+02 2.000E+02 3.000E+02 5.000E+02 6.000E+02 7.000E+02 8.000E+02 8.966E+02
 1.000E+03 2.000E+03 3.000E+03 5.000E+03 6.000E+03 7.000E+03 8.000E+03 8.966E+03
 1.000E+04 2.000E+04 3.000E+04 5.000E+04
--------------------------------------------------------------------------------
 1.302E-07 1.294E-07 1.268E-07 1.222E-07 1.203E-07 1.187E-07 1.173E-07 1.161E-07
 1.150E-07 1.081E-07 1.045E-07 1.003E-07 9.883E-08 9.763E-08 9.659E-08 9.570E-08
 9.484E-08 8.903E-08 8.517E-08 7.971E-08
--------------------------------------------------------------------------------
C
C
C     ADAS FILE TYPE : ADF21
C     SOURCE FILE    :  /packages/adas/adas/adf26/bdn97#h/bdn97#h_h1.dat
C
C     USER ID      :  anderson
C
--------------------------------------------------------------------------------
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the b-factors for both the singlet and triplet spin system. The colli sional-radiative

cross coupling coeff icients are also included. We show in table 3.3 the typical output

from ADAS311.

Table 3.3 Typical output from the Bundled-nlSL model. The first half concerns the singlet spin system

while the remainder deals with the triplet spin system. At the bottom of the tabulated data a summary

of the input parameters is given.

In a similar manner as with ADAS310, we evaluate the effective cross coupling and

emission coeff icients over a wide range of plasma parameters. The typical output for

a single plasma impurity is around 7.0 Mb. To assist in archiving and extracting the

 EFFECTIVE CONTRIBUTION TABLE FOR ION PRINCIPAL QUANTUM SHELL POPULATIONS IN THERMAL PLASMA

     HELIUM                   Z0 = 2.00E+00                Z1 = 1.00E+00

    TRAD = 1.00E+08 K        TE = 1.16E+06 K              TP = 1.16E+06 K
           W = 0.00E+00           NE = 1.00E+05 CM-3           NP = 1.00E+00 CM-3

      EH = 1.00E+00 EV/AMU   NH = 1.00E+07 CM-3        NH/NE = 1.00E+02   FLUX = 1.38E+13 CM-2 SEC-1

0COLLISIONAL DIELECTRONIC RATES

        IG         I             ALF     EFFECTIVE IONISATION AND CROSS COUPLING RATES
                                                                     1                           2                           31
         1         1       2.1711471E-13     2.1383283E-08    -1.8729842E-06    -2.7239829E-09
         2         2       7.9081675E-15    -8.5961126E-10     2.0900639E-06    -6.5498303E-10
         3        31       6.4304632E-13   -5.0658281E-10    -1.9117015E-08     2.0775860E-07

0LEVELS OF MULTIPLICITY  1
0  IR    N    L   LT              F1(I)                    F1(II)                  F1(III)                     F2                  B(CHECK)          B(ACTUAL)         NL/(B*N+)
    1    1    0    0         9.4362731E+19    0.0000000E+00    0.0000000E+00    0.0000000E+00    1.0737047E+15    1.0737047E+15    1.0597404E-20
    2    2    0    0         0.0000000E+00    1.1597567E+20    0.0000000E+00    0.0000000E+00    1.0950908E+12    1.0950908E+12    8.6224984E-21
    3    2    1    1         1.2865979E+07    3.7700009E+09    5.5303704E+06    1.2068034E+02    3.1994921E+02    3.1994921E+02    2.5712114E-20
    4    3    0    0         1.0193884E+08    1.6740420E+10    3.6584276E+07    2.1798098E+03    3.6120702E+03    3.6120702E+03    8.4259830E-21
    5    3    1    1         9.5648714E+06    4.2821961E+08    4.8132494E+05    1.0442881E+02    2.1880951E+02    2.1880951E+02    2.5235828E-20

    .   .    .   .                .                    .                     .                      .                    .                     .                     .
   .   .    .    .                .                    .                     .                      .                    .                     .                     .
   .   .    .    .                .                    .                     .                      .                    .                     .                     .

 30  100    0    0       9.2732992E+03    1.2002970E+05    4.5014386E-05    4.4865574E+00    4.5932069E+00    4.5932069E+00     8.2867359E-17
0LEVELS OF MULTIPLICITY  3
0  IR    N    L   LT              F1(I)                   F1(II)                  F1(III)                      F2                  B(CHECK)         B(ACTUAL)         NL/(B*N+)
  31      2    0    0       0.0000000E+00    0.0000000E+00    3.8351874E+19    0.0000000E+00    1.1980260E+14    1.1980260E+14    2.6074345E-20
  32      2    1    1       3.6114582E+07    2.1225959E+09    1.3754551E+11    5.2880585E+04    4.8297269E+05    4.8297269E+05    7.7332539E-20

   .   .    .    .                .                    .                     .                     .                    .                     .                     .
   .   .    .    .                .                    .                     .                     .                    .                     .                     .
    .   .    .    .               .                    .                     .                     .                    .                     .                     .

  57   80    0    0       3.5531061E-05     6.1125850E-04    2.0290738E+05    1.9135280E+01    1.9769117E+01    1.9769117E+01    1.5910655E-16
  58   90    0    0       1.1637887E-05     2.1689818E-04    8.9550399E+04    8.9357444E+00    9.2154797E+00    9.2154797E+00    2.0136833E-16
  59  100    0    0      3.2309871E-06     7.0890962E-05    3.9861521E+04    4.4877036E+00    4.6122220E+00    4.6122220E+00    2.4860208E-16

                                                                           B   = F1(I)*(N1/N+) F1(II)*(N2/N+) +F1(III)*(N3/N+) +F2
                                                                           N1  = POPULATION OF THE 1s2 1S METASTABLE
                                                                           N2  = POPULATION OF THE 2s  1S METASTABLE
                                                                           N3  = POPULATION OF THE 2s  3S METASTABLE
                                                                           N+  = POPULATION OF GROUND STATE OF NEXT IONISATION STAGE
                                                                           NL  = POPULATION OF RESOLVED NL QUANTUM SHELL OF ION
                                                                           B   = SAHA-BOLTZMANN FACTOR FOR RESOLVED NL QUANTUM SHELL
                                                                           EH  = NEUTRAL HELIUM BEAM ENERGY
                                                                            W  = RADIATION DILUTION FACTOR
                                                                           Z0  = NUCLEAR CHARGE
                                                                           Z1  = ION CHARGE+1

 NIP   =  2     INTD  =  3     IPRS  =  1     ILOW  =  1     IONIP =  1     NIONIP=  2     ILPRS =  1     IVDISP=  1
 ZEFF  = 4.0    TS  =  1.00D+08     W   =  0.00D+00     CION  =0.0     CPY =0.0     W1  =  0.00D+00     ZIMP  = 4.0 (  2.50D+04)
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effective coeff icients from the adf26 type files, we have also developed an interactive

program specifically for this task. The program is called ADAS313 and we show in

figure 3.7 the main processing screen.

Figure 3.7   Snapshot of the main processing screen of ADAS313.

A series of panels allows the user to interactively select and enter their choices. The

panel in the middle displays the parameter range over which the contents of the adf26

type file has been evaluated. This panel also houses two toggle buttons which allows

the user to select between extracting effective cross coupling or emission coeff icients

from the adf26 type file. If the user activates the cross coupling button, the bottom

left hand panel is sensitised which allows the user to specify what cross coupling

coeff icient is required. The coupling coeff icients are specified according to the index

notation of equation 3.53.  If the user activates the beam emission button, the panel

on the bottom right hand side is now sensitised. This panel allows the user to specify

the quantum numbers according to the transition of interest. Also since the

equili brium populations are calculated relative to the ground state and the two

metastables. The user also has to enter the non-equili brium reference. Once the user
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has completed their selection and activated the ‘Done’ button, a similar output screen

as in ADAS312 appears. The user is then presented with the choice of  either writing

the effective coeff icients to a file or to view the data via a surface plot or in fact both.

The surface plot is generated using the same graphical window as shown for

ADAS312. The effective coupling coeff icients are archived as adf21 type files, while

the effective emission coefficients are stored as adf22 type files.

3.4.2 Validation of ADAS310, the bundled-nS model

As discussed earlier the colli sional-radiative ionisation coeff icients, which are

calculated by ADAS310, represents the rate at which the beam neutrals are ionised as

the beam penetrates into the plasma. This rate of ionisation is determined by the

outcome of the competing colli sional and radiative processes which in turn are

governed by the plasma density. In the case of a low density plasma where colli sional

excitation is balanced by spontaneous emission. The only processes which contribute

to the ionisation of the beam neutrals are direct process from the ground state via

charge exchange and impact ionisation. Therefore  the low density ionisation rate is

simply the sum of these direct rate coeff icients. This low density ionisation rate was

compared with the ionisation coeff icient calculated by ADAS310 in the low density

regime. A similar approach was applied to a high density plasma. In a high density

plasma the rate at which the beam neutrals are ionised is simply the sum of the

colli sional excitation and ionisation coeff icients from the ground state of the

neutrals. A variety of composite target plasmas were considered. As an example we

show in figure 3.8 the results for both a pure D+ and C6+ plasma.

If we confine ourselves with the asymptotic limits of the stopping coeff icient

for a pure D+ plasma. It can be observed that in the low density regime the results

from ADAS310 and the theoretically predicted values agree exactly. In the high

density limit a maximum difference of 1.92 % can be seen. If we now consider the

plot on the right in figure 3.8 which ill ustrates the asymptotic limits for a pure C6+

plasma. In the low density limit the results between ADAS310 and theory agree

exactly and in the high density regime a maximum difference of 4.13 % can be

observed. This difference arise due to the fact that the theoretical values have been

evaluated using the rate coeff icients for the atomic processes only up to the n=4 shell .
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If we were to include more atomic processes while evaluating the theoretical limit s

the difference would tend to zero.
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Figure 3.8 Comparison between the results of ADAS310 and the theoretical predictions of the

asymptotic  limits of the stopping coeff icient. The plot on the left shows the results in the low and high

density limit for a pure D+ plasma. Similar results are shown for a pure C6+ plasma in the plot on the

right. The low and high density limit respectively correspond to an electron density of 1.0 x 107 and

1.0 x 1018 cm-3. At 1.0 x 107 cm-3 the low density limit and ADAS310 for a D+ plasma are

superimposed. The plasma temperature was 1.0 x 103 eV

We then went on to ensure that the excited state population were being

evaluated correctly. To achieve this we compared the excited state population

structure of ADAS310 with an independent low level population code

ADAS205[26]. ADAS205 calculates the excited population structure of neutral

deuterium, ignoring higher levels, in a thermal plasma. It was necessary to define a

set of low levels in ADAS310 to simulate the same conditions as in ADAS205. It

should also be noted that ADAS205 only includes electron colli sions, therefore it was

necessary to suppress any ion colli sions in ADAS310. We found that the excited state

populations were in agreement.
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3.4.3 Validation of ADAS311, the bundled-nlSL model

To validate ADAS311 a similar approach was adopted. However while investigating

the asymptotic limits of the effective coupling coeff icient we ran the program with

only the ground state specified as the non-equili brium level. This enable us to be able

to focus on one effective coeff icient. We found that it agreed with the value predicted

by summing the appropriate rate coeff icients. We then compared the populations

obtained from ADAS208[26] to that of ADAS311. ADAS208 calculates the excited

population structure of an arbitrary ion in an nl-resolved picture and is a more

advance version of ADAS205. To ensure the comparison was equivalent a similar set

of representative levels were selected. For a wide range of plasma parameters we

found that there was excellent agreement. As an example we show the equili brium

populations for the first few levels calculated by ADAS311 and ADAS208 for a pure

D+ plasma.
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Figure 3.9  Comparison between the excited population structure calculated using ADAS208 and

ADAS311. Working downwards, the population of each levels are calculated relative to the He(1 1S)

ground state and the two metastables, He(2 1S) and He(2 3S). The electron density and the plasma

temperature was respectively  1.0 x 1013 cm-3 and 2.0 x 103 eV.
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3.5 Summary

We have described the formulation and implementation of the bundled-nS and

bundled-nlSL model. The bundled-nS model is employed to calculate the attenuation

and excited population structure of  neutral deuterium beam atoms, while the

bundled-nlSL model is employed to calculate the attenuation and excited population

structure of neutral helium beam atoms.

The bundled-nS model in the context of ADAS is known as ADAS310.

During the course of this work we have developed an interactive program which

interrogates the output from ADAS310. This program is called ADAS312 and  its

role is to extract and archive effective beam stopping and emission coeff icients in

their respective formats of adf21 and adf22.

The Bundled-nlSL model, which has also been developed during the course

of this work,  is intended to be placed into the ADAS packaged as ADAS311. At the

moment it is an off line program which is driven by an ASCII file containing the

appropriate input parameters. The output of ADAS311 is also interrogated by a new

post processing program which is called ADAS313. ADAS313 extracts cross

coupling and effective emission coeff icients which are respectively stored in their

ADAS data formats of adf21 and adf22.
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4.0 Parameter dependencies and application  of the derived

atomic data relevant to neutral deuterium beam attenuation and

emission

4.1   Introduction

There are two methods which can be employed to determine the neutral deuterium

beam density as a function of penetration depth into a tokamak plasmas, see chapter

1.0. The first is a numerical attenuation calculation, which requires theoretical

effective stopping coeff icients. The second and more accurate method, involves the

use of Balmer-alpha beam emission spectroscopy and requires theoretical effective

emission coeff icients. In this chapter we explore the parameter dependencies of the

effective stopping and Balmer-alpha emission coeff icients. Particular emphasis is

placed on identifying the underlying atomic processes which contribute to both of

these coeff icients. We then consider the practical method of archiving such data and

assembling effective coeff icients for a composite plasma. The effective coeff icients

presented in this chapter have been calculated in a bundled-nS picture up to n=110

using ADAS310.

4.2   Effective collisional-radiative ionisation coefficients

In the following sub-sections we show the primary parameter dependencies of the

colli sional-radiative ionisation coeff icients. The colli sional-radiative ionisation

coeff icient is usually referred to as the effective beam stopping coeff icient in fusion

beam studies, where it describes the rate at which the beam neutrals are ionised as the

beam traverses the plasma. Figure 4.1 shows the general behaviour of the effective

stopping coeff icient as a function of electron density and neutral beam energy for a

deuterium beam penetrating into a pure D+ plasma. The parameters to which the

effective beam stopping coeff icient is most sensitive include the electron density, the

neutral beam energy, plasma temperature and the nuclear charge of fully stripped

plasma impurity ions. It should be noted that the colli sional-radiative ionisation

coeff icient is also strongly dependent on the ion density, in the present work however

the coeff icients are calculated in terms of the electron density with  charge neutrality

imposed.
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We also wish to achieve two further objectives. Firstly we want to show the

importance of including the influence of all the impurities contained in a composite

plasma while evaluating effective stopping coeff icients. To achieve this we evaluate

the effective coeff icients using ADAS310 for a range of composite plasmas and

identify the individual contributions due to each impurity ion. We emphasise

however that it is common practise to assemble composite coeff icients using the

rapid look up tables as discussed in section 4.4. Secondly we want to ill ustrate the

sensitivity of the effective beam stopping coeff icient following small changes in the

fundamental atomic data which enters into the modelling as input.

Figure 4.1   A surface plot  of the effective stopping coeff icient for a pure deuterium plasma with a

temperature of 2 × 103 eV. Near the coronal limit at 1 × 108 cm-3, the behaviour of the stopping

coeff icient reflects the rate coeff icients for direct ionisation from the ground state of the beam neutrals

via charge exchange and ion impact ionisation. As the density is increased the colli sional losses from

the excited states increases until a high density limit is reached.

4.2.1 Density dependence

The electron and ion density both control the effectiveness at which the atomic

processes contribute to the beam stopping coeff icient. Due to the eff iciency of ion

colli sions  the ion density is more influential. In figure 4.2 the influence of the
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electron density on the effective stopping coeff icient can be observed as a function of

beam energy.
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Figure 4.2   Effective beam stopping coeff icient Vs neutral beam energy for a pure D+ plasma. The

ion temperature is  2 x 103 eV. The density dependence of the effective coeff icient is clearly ill ustrated

with the assistance of the low and high density limit.

As can be seen in figure 4.2, the departure from the low density coronal limit appears

around ~1010 cm-3, while the formation of the high density limit i s approached at ~1

x 1018 cm-3.  The characteristic density dependence of the stopping coeff icient is not

only confined to a pure D+ plasma. We have undertaken similar behavioural studies

for a wide range of plasmas with a different impurity content. As an extreme example

we show in figure 4.3 the density dependence of the effective stopping coeff icient for

a deuterium beam penetrating into a hypothetical plasma of pure C6+. We should

emphasise that it is the ion density which governs the behaviour of the effective

stopping coeff icient even though we show the behaviour of the effective coeff icient

in terms of the electron density.
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Figure 4.3  Beam stopping coeff icient Vs the neutral beam energy for a hypothetical plasma of pure

C6+ . The ion temperature is 2 x 103 eV. Also shown in the figure, with the dashed lines, is the

contribution to the effective coefficient due to electron collision  for a range of electron densities.

The low density coronal limit can be observed to form around  ∼1.0 x 1011 cm-3,

which corresponds to an ion density of  ∼1.6 x 1010 cm-3, while the high density

picture occurs at an electron density of  ∼1.0 x 1017 cm-3. Also shown in the figure,

with the dashed lines, is the contribution to the effective stopping coeff icient due to

electrons colli sions. The electrons are moving at such great speeds that their small

contribution is independent of the beam energy. It is of interest to point out the

difference in the magnitude of the stopping coeff icient for a pure D+ and C6+ plasma.

The latter is substantial larger and is due to the greater eff iciency of the C6+ plasma

ions at stripping the electrons from the beam atoms. The influence of the nuclear

charge of the plasma impurity ions is discussed in 4.2.4.

4.2.2 Neutral beam energy dependence

The neutral beam energy governs the relative eff iciency of electrons and ions causing

the attenuation and population redistribution of the neutral beam atoms.  However

the extent of the energy dependence of the effective stopping coeff icient is also
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coupled to the ion density.  In figure 4.4 we ill ustrate the influence of the neutral

beam energy on the stopping coeff icient as a function of electron density for a pure

D+ plasma.
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Figure 4.4   A plot of the effective stopping coeff icient Vs electron density for a pure D+ plasma. The

influence of the neutral beam energy on the effective stopping coeff icient for a fixed ion temperature

of 2 x 103 eV is shown. Also shown, with the dashed line, is the small contribution to the effective

stopping coefficient due to electron collisions.

It can be seen that for a fixed beam energy the effective stopping coeff icient increases

as the electron density is increased. This is due to the role of stepwise atomic

processes which become important as the electron and hence the ion density is

increased. Also shown, with the dashed line, is the small contribution to the effective

stopping coeff icient due to electron colli sions. The contribution due to electrons also

increases as the electron density is increased. However the rate of increase is

substantially smaller since colli sional redistribution due to electron colli sion is less

eff icient. It can also be observed in figure 4.4, that for a fixed electron density the

effective stopping coeff icient increases and then decreases as the beam energy is

increased from 3.0 to 100 keV amu-1. This simply reflects the energy dependence of

the underlying atomic processes, see chapter 2.0. The net effect of all the competing

processes is that the  effective stopping coeff icient can be observed to increase and

then slowly decrease as a function of beam energy.
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4.2.3 Temperature dependence

The plasma temperature dependence of the stopping coeff icient arises from the

relative colli sion velocities between the beam atoms and the fully stripped thermal

plasma ions. The relative colli sion velocities govern the behaviour of the colli sion

cross sections which in turn influence the rate coeff icients which enter into the

statistical balance equations.  In the simplest form, the  expression for the rate

coefficient for an arbitrary process is given as,

( ) ( )σ σv v f v v dvr t r t
v

=
∞

∫
min

4.1

where f(vt) is the velocity distribution of the thermal plasma ions, σ(|vr|) is the

colli sion cross section  and vr is the relative colli sion velocity between the beam

atoms and the thermal ions, i.e.  |vr|=|vb-vt|.

In the case where the beam velocity, vb, is substantially greater than the

thermal velocity of the plasma ions, it can be shown that the rate coeff icients and

hence the effective beam stopping coeff icients are independent of the plasma

temperature. The temperature dependence of the stopping coeff icients can only be

observed when the beam velocity is not vastly different from the thermal velocity of

the plasma ions. In such circumstances, an increase or decrease in the plasma

temperature alters the relative colli sion velocity as well as the shape and position of

the velocity distribution. Depending on the behaviour of the underlying colli sion

cross sections this may result in either increasing or decreasing the effective stopping

coeff icient. When the beam velocity is slightly greater than the thermal velocity of

the plasma ions, an increase in the plasma temperature contributes to decreasing the

relative colli sion velocity. In figure 4.5 we show the temperature dependence of the

stopping coefficient as a function of beam energy for such a scenario.
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Figure 4.5   A plot of the effective stopping coeff icient Vs neutral beam energy  for a pure D+ plasma

with a density of  3.0 x 1013 cm-3.

As the plasma temperature increases, it can be observed from figure 4.5 that  the

effective stopping coeff icient decreases. This is attributed to the fact that as the

relative colli sion velocity decreases the colli sion cross sections also decrease. It is of

interest to point out that when the thermal velocity of the plasma ions is slightly

greater than the beam velocity the opposite occurs. As the plasma temperature

increases the relative colli sion velocity and the colli sion cross sections also increase,

see figure 4.6.
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Figure 4.6   Beam stopping coeff icient Vs neutral beam energy for D+ plasma with a density of 3.0 x

1013  cm-3.  In the low energy regime an increase in the plasma temperature results in an increase  in the

effective stopping coefficient.
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In the low energy regime of f igure 4.6, as the plasma temperature increases the

effective stopping coeff icients also increase. It should be noted that an increase or

decrease in the relative colli sion velocity does not necessary result in a similar

increase or decrease in the effective stopping coeff icient. The influence of the relative

colli sion velocity depends on the behaviour of the colli sion cross sections.

Nevertheless the temperature dependence of the stopping coeff icient is weak and is

almost independent of the beam energy and the electron density. As ill ustrated in

figure 4.5 and 4.6, increasing the temperature by a factor of 5 only results in an

average change of 12  % in the effective stopping coefficient.

4.2.4 Nuclear charge dependence

The nuclear charge of a fully stripped plasma ion characterises how effective the ion

will be at ionising the neutral beam atoms. As the nuclear charge increases, the

associated cross sections which describe the behaviour of charge exchange and ion

impact ionisation also increase, see chapter 2.0.  In this section we briefly ill ustrate

the influence of fully stripped plasma ions on the effective stopping coeff icient. We

show in figure 4.7, the effective stopping coeff icient as a function of beam energy for

a variety of pure impurity plasmas.
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Figure 4.7  Beam stopping coeff icient Vs neutral beam energy for a pure impurity plasma.  Note the

asymptotic behaviour of the beam stopping coeff icient for each impurity. The electron density was 3.0

x 1013 cm-3 and the plasma temperature was 2.0 x 103 eV.
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In the low energy regime we can observe a charge dependence of the effective

stopping coeff icient. This is simply due to the behaviour of the underlying charge

exchange cross sections. The charge exchange cross sections scale approximately

with the nuclear charge of the receiver ion. As the beam energy is increased  a near

coincidence of curves in the relevant beam range of current tokamaks can be

observed. Finally in the high energy regime, the charge dependence of the effective

stopping coeff icient can again be observed. On this occasion however it is due to the

charge dependence of the ion impact ionisation cross sections. The ion impact

ionisation cross sections also scale approximately with the nuclear charge of the

impurity ion. From the results shown in figure 4.7, it would appear that the effective

stopping coeff icient also scales approximately with the nuclear charge. However the

electron density was fixed at a value of 3.0 x 1013 cm-3  and charge neutrality had

been imposed. Therefore as the nuclear charge of the plasma ion increased, the

corresponding number density decreased. Therefore the behaviour of the effective

stopping coeff icient in fact scales with a value which is slightly larger than the

nuclear charge .

4.2.5 The importance of impurities

So far we have presented data showing the primary parameter dependencies of the

effective stopping coeff icients for  pure plasmas. Working fusion plasmas consist of

electrons and deuterons together with unavoidable small concentrations of various

fully stripped impurity species. The different components which make up the

composition of the plasma all contribute to exciting and ionising a penetrating beam.

In this sub-section we attempt to ill ustrate the influence of such mixed impurities

while evaluating effective stopping coeff icients. This allows one to quantitatively

assess the importance of considering the mixed impurity content of the plasma. The

approach taken was to evaluate effective stopping coeff icients for a range of

composite plasma and in each case highlight the individual contribution from each

impurity contained in the plasma.

We begin by considering a simple plasma which consists of 98 % D+ and 2 %

He2+. In figure 4.8 we show the energy and density dependence of the effective
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stopping coeff icient, also shown in both figures are the individual contributions due

to each ion.
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 Tot al St opping coef f ic ient
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Figure 4.8    A plot of the effective beam stopping coeff icient for a composite plasma consisting of

98% D+ and 2 % He2+. The plot on the left exhibits the energy dependence of the effective stopping

coeff icient while the plot on the right ill ustrates the density dependence. The ion temperature was 2.0 x

103 eV and the electron density for the plot on the left was 3.0 x 1013  cm-3. The beam energy

corresponding to the plot on the right was 5.0  keV amu-1.

If we first consider the energy dependence of the composite stopping coeff icient

which is shown in the plot on the left of f igure 4.8. It can be observed that the

contribution to the total stopping coeff icient due to the 2% concentration of He2+,

increases from 2.5 % at 5.0 keV amu-1 to 5.3  % at 120.0 keV amu-1.  The

contribution due to the He2+ ions is in fact greater than their total concentration in the

plasma. This simply reflects the larger cross sections associated with He2+ ions and

hence their greater eff iciency at stripping electrons from  the beam atoms in

comparison with the D+ ions. This effect can also be observed in the plot on the right

in figure 4.8, which ill ustrates the electron density dependence of the composite

stopping coeff icient. At a density of 1.0 x1012 cm-3 the contribution due to He2+ is

5.69 %, which decreases to a value of 4.81 % as the electron density is increased.
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We now consider a slightly different plasma which consists of 96 % D+, 2%

He2+ and 2% Be4+. The energy and density dependence of the composite stopping

coefficient can be seen in figure 4.9.
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Figure 4.9    A plot of the effective beam stopping coeff icient for a composite plasma consisting of

96% D+, 2% He2+  and 2%  Be4+ . The plot on the left shows the energy dependence of the composite

coeff icient while the plot on the right exhibits the density dependence. The ion temperature was 2.0 x

103 eV and the electron density for the plot on the left was 3.0 x 1013 cm-3. The beam energy for the

plot on the right was 5.0 keV amu-1.

As shown in the plot on the left of f igure 4.9, the contribution to the total stopping

coeff icient due to the He2+ ions increases from 2.41 to 4.66 % at the respective beam

energies of 5.0 and 120.0 keV amu-1.  The corresponding contributions due to the

Be4+ ions is 6.31 and 12.78 %. The larger contribution due to the Be4+ ions is due to

the increase in the associated charge exchange and ion impact ionisation cross

sections. The increase in the cross sections is so great that the decrease in the number

density of Be4+ ions in comparison to the He2+ ions, since charge neutrality is

imposed, has littl e effect. If we now consider the electron density dependence of the

composite stopping coeff icient which is shown in the plot on the right in figure 4.9. It

can be seen that at a density of 1.0 x 1012 cm-3, the contributions to the total stopping

coeff icient due to the He2+ and Be4+ ions are respectively 5.1 and 11.67 %. The
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contribution due to each ion decreases as the electron density is increased. This

reflects the increased contribution due to the D+ ions as a result of stepwise atomic

processes. At  a density of 1.0 x 1015 cm-3, the contribution due to He2+ and Be4+ ions

are now respectively 4.45 and 9.32%.

The final plasma which is under scrutiny consists of  93 % D+, 2% He2+, 2%

Be4+ and 3% C6+. The energy and density dependence of the composite stopping

coefficient and the associated contributions from each ion is shown in figure 4.10.
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Figure 4.10    A plot of the effective beam stopping coeff icient for a composite plasma consisting of

93 % D+,  2% He2+ , 2%  Be4+ and 3%  C6+. The plot on the left shows the energy dependence while

the plot on the right exhibits the electron density dependence. The plasma temperature was 2.0 x 103

eV and the electron density for the plot on the left was 3.0 x 1013 cm-3. The neutral beam energy for

the plot on the right was 5.0 keV amu-1 .

The energy dependence of the composite stopping coeff icient  and the contributions

from each ion are shown in the plot on the left of f igure 4.10. It can be seen that at

5.0 keV amu-1, the contributions to the total stopping coeff icients due to the He2+ ,

Be4+ and C6+  ions are respectively 2.18, 5.67  and 11.74 %. These contributions can

be observed to increase and reach a maximum of  3.44 %, 9.53 % and 27.26 % at 125

keV amu-1. It is some what surprising that a mere 3 % concentration of C6+ can

contribute as much as 27.26 % to the total stopping coeff icient. This is due to the
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large cross sections associated with the C6+ ions. Similar results can be seen in the

plot on the right in figure 4.10, which ill ustrates the electron density dependence of

the composite stopping coefficient.

4.2.6 Influence of fundamental low level data

In this sub-section we probe the influence of the fundamental atomic data on the

effective stopping coeff icients. The approach taken here was to modify the cross

sections for each of the atomic processes individually, and then investigate what

effect it had on the stopping coeff icient. Since ion-atom colli sions dominate the

population redistribution and attenuation, we have restricted ourselves to modifying

only the ion-atom colli sion database. For  convenience we only consider a pure D+

plasma.

We begin by first assessing the implications of increasing the cross sections

which describe the behaviour of direct charge exchange and ion impact ionisation by

10 %. The results can be seen in figure 4.11, where we show the effective stopping

coeff icient as a function of beam energy for three different electron densities. The

electron densities were selected to correspond to the coronal, colli sional-radiative and

high density picture. Also shown in the figure are the results obtained from the

unmodified ion-atom collision database.

In the low density coronal picture, it can be observed from figure 4.11 that a

10 % change in the cross sections results in an increase in the stopping coeff icient by

8.54 % at 3.0 keV amu-1, which then increases slightly and then decreases to 7.29 %

at 120.0 keV amu-1. Due to processes which counter direct charge exchange and ion

impact ionisation a change of 10 % in the fundamental data does not give rise to a 10

% change in the effective stopping coeff icient. An example of such a process would

be colli sional excitation, which contributes to depopulating the ground state without

ionising the beam atoms and hence reducing the influence of such direct processes.

The evidence to suggest this can be seen when the electron density is increased. At an

electron density of 3.0 x 1013 cm-3, the influence of the modified data results in a

change of 8.06 % at 3.0 keV amu-1, which then decreases to 5.85 % at 120.0 keV

amu-1. The increase in the density has enhanced the influence of colli sional excitation
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and stepwise atomic processes, which in turn reduces the influence of the

fundamental data for direct charge exchange and impact ionisation. At an electron

density of 1.0 x 1015 cm-3 the result of modifying the cross sections is now only 7.14

% at 3.0 keV amu-1 and 3.78 % at 120.0 keV amu-1.
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Figure  4.11   Effective stopping coeff icient Vs the neutral beam energy for a range of electron

densities. The electron densities were selected to correspond to the coronal, colli sional-radiative and

high density picture. The dashed lines represent the results obtained from the unmodified database.

The solid lines represent the results obtained by increasing the direct charge exchange and ion impact

ionisation cross-sections  by 10 %. The ion temperature was 2.0 x 103 eV.

It is of interest to identify which of the atomic processes associated with the

ground state has the most significant effect on the stopping coeff icient. In figure 4.12

we show the results of individually modifying the direct charge exchange and ion

impact ionisation cross sections by 10 %.
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Figure  4.12   Effective stopping coeff icient Vs the neutral beam energy for a pure D+ plasma. The

dashed lines are the results from the unmodified database. The solid lines are the results obtained from

the modified database. The plot on the left shows the results of increasing the direct charge exchange

cross section by 10%. The plot to the right shows the effect of increasing the direct ion impact

ionisation cross section by 10 %.

If we first consider the plot on the left in figure 4.12. In this plot the results of

changing the direct charge exchange cross section can be observed as a function of

beam energy for three different electron densities. At an electron density of 1.0 x108

cm-3, it can be observed that the modified data has resulted in the effective stopping

coeff icient differing substantially in the low energy regime. However as the beam

energy is increased the difference becomes less significant and eventually the results

from the modified and unmodified data agree. An increase in the effective stopping

coeff icient by 7.69 % can be seen at 3.0 keV amu-1, however at 60.0 keV amu-1 it is

only 2.47 % and at 120 keV amu-1 it is now just 0.43 %. If we increase the electron

density the difference between the modified and unmodified data decrease in the

same manner as show in figure 4.11. The influence of the charge exchange data is as

expected. It is interesting to point out that in figure 4.11 a difference of 8.54 % was

observed at a density of 1.0 x 108 cm-3 , therefore we can infer that the contribution
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due to altering the ion impact ionisation cross section by 10 % is only 0.85 % at 3.0

keV amu-1. If we now focus on the plot on the right in figure 4.12. This plot contains

the results of modifying the direct ion impact ionisation cross section by 10%. As can

be observed for an electron density of 1.0 x 108 cm-3, as the beam energy increases

the influence of the modified data also increases. At an energy of 3.0 keV amu-1 the

influence is negligible, however at an energy of 60.0 keV amu-1 an increase in the

effective coeff icient by  5.41 % can be seen, which increases further to reach a value

of 7.0 % at 120.0 keV amu-1. As before, an increase in the electron density enhances

stepwise atomic processes, which reduces the influence of modifying the direct cross

sections.

We now consider the implications of modifying the ion impact excitation

cross sections. The ion-atom colli sion database contain ion impact excitation cross

sections from the ground state to the n=2,3,4 and n=5 shell . In figure 4.13 we show

the results of modifying all of the ion impact excitation cross sections by 20%.
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Figure  4.13   Effective stopping coeff icient Vs the neutral beam energy for a range of electron

densities. The ion temperature was 2.0 x 103 eV. The dashed lines represent the results from the

unmodified database. The solid lines are the results obtained by modifying the ion impact excitation

cross sections by 20 %.
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In the low density regime, the influence of modifying the fundamental data is

negligible. As the electron density is increased the influence of the modified data

becomes more significant, even though it is still small . At an electron density of 3.0 x

1013 cm-3, the difference between the effective stopping coeff icient calculated with

and without the modified data, increases as the beam energy also increases. At a

beam energy of 20.0 keV amu-1, the difference is only 0.77 % which increases to 2.75

% at 120.0 keV amu-1. Even at 1.0 x 1015 cm-3 , the largest difference which can be

observed is 6.81 % at 120.0 keV amu-1. In figure 4.14 we show the results of

individually changing the ion impact excitation cross sections, we have refrained

from showing the results for the excitation cross section from the ground state to the

n=5 shell, since the effect was insignificant.
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Figure  4.14   Effective stopping coeff icient Vs the neutral beam energy for a pure D+ plasma.

Working from left to right the plots ill ustrate the results of changing the ion impact excitation cross

sections from the ground state to the n=2, 3 and n=4 shell . The dashed lines represents the results from

the unmodified database. The ion temperature was 2.0 x 103 eV and the excitation cross sections were

increased by 20%.
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Working from left to right, the results of modifying the ion impact excitation cross

sections from the ground state to the n=2,3 and n=4 shell can be seen in figure 4.14.

The influence of the modified data only becomes important when the electron density

is increased. Modifying the excitation cross section for the n=1→2 transition has the

most significant effect. A maximum increase in the effective stopping coeff icient by

0.96 % at 3.0 x 1013cm-3 can be observed, which then increases to 4.54 % at 1.0 x

1015 cm-3. This is due to the large ion impact ionisation cross section associated with

the n=2 shell , as the n=2 population is enhanced by increasing the n=1→2 excitation

cross section, the rate at which electrons are stripped from the beam atoms increases.

The influence of changing the cross sections for charge exchange and ion

impact ionisation associated with excited states is now of interest. The ion-atom

database contains such data for the n=2,3,4 and n=5 shell . In figure 4.15 the results of

increasing all of the cross sections by 30 % can be seen as a function of beam energy

for three different electron densities.
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Figure  4.15   Effective stopping coeff icient Vs the neutral beam energy for a pure D+ plasma. The

electron densities were selected to correspond to the coronal, colli sional-radiative and the high density

picture. The ion temperature was 2.0 x 103 eV. The charge exchange and ion impact ionisation cross

sections associated with the n=2,3,4 and 5 shell  were increased by 30 %.
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As can be observed, a change in the cross section by 30 % at an electron density of

1.0 x108 cm-3 has no effect. Even as the density is increased the effect is minimum.

This is due to the fact that the excited state populations are very small . A maximum

difference of 1.26 % at 1.0 x 1015 cm-3 can be observed. In figure 4.16 we show the

results of separately modifying the charge exchange and ion impact ionisation cross

section by 30%.
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Figure  4.16   Effective stopping coeff icient Vs the neutral beam energy for a pure D+ plasma. The

figure on the left ill ustrates the results of  increasing the charge exchange cross sections associated

with the excited states ( n=2,3,4 and 5 shell )  by 30 %. The plot on the right shows the behaviour of

altering the ion impact ionisation cross sections also associated with the excited states ( n=2,3,4 and 5

shell )  by 30 %.

4.2.7 Conclusion

A colli sional-radiative treatment is necessary to evaluate the effective stopping

coeff icients. The coronal picture leads to errors at the operating densities of current

tokamaks ( ∼3.0 x1013 cm-3 ), see figure 4.2.

The neutral beam energy governs which atomic process are primarily

responsible for the attenuation of the neutral beam atoms, see chapter 2.0.

The  plasma temperature influences the relative colli sion velocity between the

beam atoms and the thermal plasma ions. This contributes to either increasing or
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decreasing the effective stopping coeff icient. The influence of the temperature on the

effective stopping coeff icient is considerably weaker than the electron density and the

neutral beam energy, see figure 4.5. A difference of approximately 12% can be

observed when the temperature is changed by a factor of 5.

The nuclear charge of fully stripped plasma ion characterises how effective

the ion will be at stripping the electrons from the beam atoms. We have shown that

as the nuclear charge of a plasma impurity ion increases, the more effective the ion

becomes at ionising the beam atoms.

The role of impurities contained in the plasma has also been shown to be of

great importance while evaluating effective stopping coeff icients. From the examples

that we considered, the contribution to the total stopping coeff icients due to each of

the impurity ions can be substantial. For a basic plasma consisting of 98% D+ and 2%

He2+, the contribution to the total stopping coeff icient due to the He2+ ions ranged

from  2.5 to 5.69 %. In the case of a more detailed plasma consisting of 93% D+, 2%

He2+, 2% Be4+ and 3% C6+, the C6+ ions alone contributed up to 27.73 % to the total

stopping coefficient.

The influence of the fundamental atomic data on  the effective stopping

coeff icients was investigated. A 10 % increase in the cross sections for direct charge

exchange and ion impact ionisation resulted in an increase of approximately 8 % in

the stopping coeff icient. Stepwise atomic processes counter the influence of direct

charge exchange and ion impact ionisation. Increasing the electron density, which

enhances stepwise atomic processes, results in reducing the influence of modifying

the fundamental data for the direct processes.

Individually increasing the cross sections for each of the direct processes

ill ustrated the energy dependence of  their contribution to the stopping coeff icient.

The contribution due to charge exchange was dominant at the lower energies whilst

ion impact ionisation was more significant at the higher energies.

Modifying the ion impact excitation cross sections by 20% had littl e effect at

densities around 1.0 x 108 cm-3. This is due to the fact that at this density the excited

states are barely populated. As the density was increased the influence of modifying

the excitation cross section was evident. At a density of 3.0 x 1013 cm-3 a change in
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the excitation cross sections by 20 % resulted in a change in the stopping coeff icient

by 2.75 %. Even at 1.0 x 1015 cm-3 a maximum  change of 6.81 % could only be

observed. Modifying the excitation cross section for the n=1→2 transition had the

most significant effect.

The influence of modifying the charge exchange and ion impact ionisation

cross sections associated with excited states was negligible. Altering the cross

sections by 30 % only resulted in a maximum change of 1.26 % in the stopping

coeff icient. This again is attributed to the fact that the excited states populations are

very small.

4.3 Effective Balmer-alpha emission coefficients

In a similar manner as in section 4.2, we ill ustrate the main parameter dependencies

of the Balmer-alpha effective emission coeff icient. The Balmer-alpha effective

emission coeff icient directly reflects the population of the n=3 shell of the excited

beam neutrals. Figure 4.17 ill ustrates the global behaviour of the emission coeff icient

for a neutral deuterium beam penetrating into a pure D+ plasma.

The main parameter dependencies of the Balmer-alpha effective emission

coeff icient which are considered include  the electron density, the neutral beam

energy, plasma temperature and the nuclear charge of the impurity ions contained in

the plasma. The ion density is also an important parameter but in the present work

the effective emission coeff icients are  also calculated in terms of the electron density

with the condition of charge neutrality imposed.

We also concern ourselves here with two additional physics issues. Firstly,

we ill ustrate  the influence of the fundamental atomic data, following small changes,

on the behaviour of the Balmer-alpha effective emission coeff icient. Secondly we

show the importance of taking into account the impurity content of the plasma while

evaluating effective emission coefficients.
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Figure 4.17  A surface plot of the Balmer-alpha  emission coeff icient for a pure deuterium plasma

with a temperature of 2 × 103 eV. The behaviour of the emission coeff icient in the coronal limit

directly reflects the rate coeff icients contributing to populating and depopulating the n = 3 shell . As the

density is increased the n = 3 shell becomes considerably depopulated  which results in a decrease in

the emission coefficient.

4.3.1 Density dependence

The electron and ion density are both responsible for promoting colli sional

redistribution amongst the excited states of the neutral beam atoms. The latter being

of greater influence. We show in figure 4.18 the behaviour of the Balmer-alpha

emission coefficient as a function of energy for a range of electron densities.
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Figure 4.18   Balmer-alpha effective emission coeff icient Vs the neutral beam energy for a pure D+

plasma. The electron density  dependence of the effective emission coeff icient is clearly ill ustrated.

The plasma temperature was  2.0 x 103 eV

The departure from the low density coronal limit can be observed to occur around

~1010 cm-3 ( c.f. figure 4.2 ). As the electron density is increased, the colli sional

processes begin to compete with the radiative processes. This results in the n=3 shell

also being colli sionally depopulated and a decrease in the effective emission

coefficient can be observed.

A similar behaviour can be observed when considering plasmas with a

different impurity composition. As an example we show in figure 4.19  the density

dependence of the effective emission coeff icient for a deuterium beam penetrating

into a hypothetical C6+ plasma. We emphasise, once again, that it is the ion density

which is primarily responsible for the colli sional redistribution. As mentioned before,

the effective emission coeff icients in this work are calculated in terms of the electron

density.
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Figure 4.19   Effective emission coeff icients Vs the neutral beam energy for a pure C6+ plasma.  The

plasma temperature was 2.0 x 103 eV. The coeff icient has been calculated in terms of the electron

density with the condition of charge neutrality imposed.

It is of interest to point out that in the low energy regime of f igures 4.18 and 4.19, the

magnitude of the effective emission coeff icients are comparable. This is due to the

fact that in this regime, electron colli sions are primarily responsible for populating

the n=3 shell . However as the beam energy  increases, the role of the ion colli sions

become important and the results in each figure begin to differ due to the influence of

the nuclear charge associated with each ion. The nuclear charge of the plasma

impurity ion determines how effective the ion will be at depopulating the n=3 shell

and is discussed in section 4.3.4.

4.3.2 Neutral beam energy dependence

The neutral beam energy controls the eff iciency  of the fundamental atomic processes

which contribute to populating and depopulating the n=3 shell . We show in figure

4.20 the behaviour of the Balmer-alpha effective emission coeff icient as a function of

electron density for a range of beam energies.
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Figure 4.20   The Balmer-alpha effective emission coeff icients Vs the electron density for a pure D+

plasma with a temperature of 2.0 x 103 eV. The energy dependence of the Balmer-alpha emission

coeff icient is clearly ill ustrated. Also shown, with the dashed lines, is the contribution to the effective

stopping coefficient due to electron collisions.

At a density of 1.0 x 1012 cm-3, an increase in the beam energy results in an increase

in the effective emission coeff icient. This simply reflects the energy dependence of

the underlying atomic processes which contribute to populating the n=3 shell . In the

low energy regime, colli sional excitation by electrons is the dominant process. As the

neutral beam energy is increased, ion impact excitation, which is more eff icient,

becomes substantial, see chapter 2.0. It can also be observed that as the electron

density is increased the effective emission coeff icient decreases. This can be

attributed to the influence of stepwise atomic processes, particularly  charge

exchange and ion impact ionisation from the n=3 shell . Also shown in the figure,

with the dashed line, is the contribution to the Balmer-alpha emission coeff icient due

to electron colli sions. This also exhibits a decrease as the electron density is

increased.

4.3.3 Temperature dependence

The plasma temperature dependence of the effective emission coeff icient also

exhibits the same behaviour as shown for the effective stopping coeff icients, see
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section 4.2.3. In summary, when the beam velocity is slightly greater than the thermal

velocity of the plasma ions, an increase in the plasma temperature results in a

decrease the relative colli sion velocity. This in turn may lead to either an increase or

decrease in the colli sion cross sections for the processes which populate the n=3

shell . Where as when the thermal velocity of the ions is slightly greater than the beam

velocity, an increase in the temperature results in an increase in the relative colli sion

velocity. In figure 4.21 we show the temperature dependence of the Balmer-alpha

emission coefficient as a function of beam energy.
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Figure 4.21   Effective Balmer-alpha emission coeff icient Vs neutral beam energy for a D+ plasma .

The electron density and plasma temperature was 3.0 x 1013 cm-3  and 2.0 x 103 eV respectively. A

change in the effective coeff icient by  6.8 %  at a beam energy of 30 keV amu-1 can be achieved by

modifying the temperature by a factor of 5, this increases to 12.7 % at 70 keV amu-1.

As shown in figure 4.21, in the low energy regime an increase in the plasma

temperature gives rise to an increase in the effective emission coeff icient. This is

simply due to an increase in the colli sion cross sections as a result of increasing the

relative colli sion velocity between the beam atoms and the thermal plasma ions. In

the high energy regime the opposite can be observed. It can also be  seen that at an

energy of 30 keV amu-1, a change in the emission coeff icient of  6.8 %  can be
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achieved by modifying the temperature by a factor of 5. This increases to 12.7 % at

70 keV amu-1. A point to note however is  that below 10 keV amu-1 a change of up to

40 % can be observed. The temperature dependence of the emission coeff icient is

larger than that for the effective stopping coeff icient. This is due to the increased role

of electron colli sions which contribute to populating the n=3 shell , see figure 4.20,

where as for the effective stopping coeff icients, the contribution due to the electrons

is very small, see figure 4.4

4.3.4 Nuclear charge dependence

As discussed in 4.2.4, the nuclear charge of a fully stripped plasma ion governs how

effective the ion will be at stripping the electrons from the beam atoms. The nuclear

charge also determines the extent to which the ion will contribute to the colli sional

redistribution of the excited states of the beam atoms. In general, the eff iciency of the

ion increases with nuclear charge. If we consider the population of the n=3 shell , as

the nuclear charge of the plasma ion increases, the cross sections for the colli sional

processes which populate the n=3 shell , such as excitation, also increase. We would

then expect the n=3 shell population and hence the Balmer-alpha coeff icient to

increase. However the cross sections for ion impact ionisation and charge exchange

from the n=3 shell also become larger. The net effect is that the population of the n=3

shell becomes smaller as the nuclear charge of the plasma ion increases. We show in

figure 4.22, the behaviour of the Balmer-alpha effective emission coeff icient as a

function of beam energy for a range of pure impurity plasmas.

In the low energy regime the n=3 shell i s populated primarily by electron

colli sions and the Balmer-alpha emission coeff icient is almost independent of the

beam energy, see figure 4.22. There is a small thermal contribution from each ion,

which gives rise to the nuclear charge dependence of the effective emission

coeff icient. As the beam energy is increased the ion colli sions become important and

as can be observed the larger the nuclear charge the smaller the effective emission

coeff icient. We highlight here that the electron density was fixed at 3.0 x 1013 cm-3

and charge neutrality was imposed. Therefore as the nuclear charge of the impurity

ion increases the corresponding number density decreases.



101

0

1x10
-9

2x10
-9

3x10
-9

5x10
3

10
4

2x10
4

5x10
4

10
5

Ne
+10

F 
+9

O 
+8

N 
+7

C 
+6

B 
+5

Be 
+4

Li
+3

He
+2

NEUTRAL BEAM ENERGY ( eV amu 
-
 
1
 )

E
F

F
E

C
T

IV
E

 E
M

IS
S

IO
N

 C
O

E
F

F
IC

IE
N

T
 (

 c
m

3
 s

 -  1
 )

Figure 4.22   Effective emission coeff icient Vs neutral beam energy for a range of pure impurity

plasmas. The electron density and the plasma temperature was respectively 3.0 x 1013 cm-3 and 2.0 x

103 eV. A point to note is that charge neutrality has been imposed, therefore  the number density of

impurity ions decreases as the nuclear charge of the impurity species increases.

4.3.5 The importance of impurities

In fusion plasmas, the typical concentration of each impurity ion rarely exceeds 5 %.

To simpli fy the evaluation of the effective emission coeff icient, it may then appear to

be valid to neglect the impurity content of the plasma. However this is not the case.

In this section we ill ustrate the importance of taking the impurity content of the

plasma into account while evaluating effective emission coeff icients. The approach

adopted here is similar to that of section 4.2.5, here we calculate the effective

Balmer-alpha emission coeff icient for a range of composite plasmas and in each case

ill ustrate the contribution due to each impurity ion. This will allows us to

quantitatively assess the implications of neglecting the impurity content of the

plasma while evaluating effective emission coefficients.

We first begin with a composite plasma which consists of 98 % D+ and 2 %

He2+. The energy and density dependence of the composite emission coeff icient is

shown in figure 4.23. Also shown are the individual contributions due to the D+ and

He2+ ions.
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Figure 4.23   A plot of the Balmer-alpha effective emission coeff icient for a composite plasma

consisting of 98% D+ and 2% He2+. The plot on the left ill ustrates the energy dependence of the

composite stopping coeff icient, while the plot on the right shows the corresponding density

dependence.

The energy dependence of the effective emission coeff icient is shown in the plot on

the left in figure 4.23.  It can be observed that the contribution to the total emission

coeff icient due to the 2% concentration of He2+ ions, increases from 6.6 % at 5.0 keV

amu-1 to 6.95 % at 125 keV amu-1. A similar result can be observed in the plot on the

right in figure 4.23, which ill ustrates the electron density dependence of the emission

coeff icient. As the electron density is increased the contribution to the composite

emission coeff icient slowly increases. At a density of 1.0 x 1012 cm-3, the

contribution due to the He2+ ions is 4.14 %, which then increases to a maximum

value of 8.70 % at a density of 1.0 x 1015 cm-3.

We now consider a slightly different plasma which consists of 96 % D+, 2%

He2+ and 2% Be4+. The energy and density dependence of the composite coeff icient

can be seen in figure 4.24.
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Figure 4.24   A plot of the Balmer-alpha effective emission coeff icient for a composite plasma

consisting of 96 % D+, 2 % He2+ and 2% Be4+ . The plot on the left exhibits the energy dependence of

the composite emission coeff icient, while the plot on the right ill ustrates  the density dependence. Also

shown are the individual contributions due to each ion.

The plot on the left ill ustrates the energy dependence of the emission coeff icient. The

individual contributions  due to the He2+ and Be4+ ions respectively increase from

5.97 and 13.12 % at 5.0 keV amu-1 to 6.03 and 15.78 % at 125 keV amu-1.  The

contribution from the Be4+ ions is greater since the associated cross sections are

larger. In figure 4.24 we also show the electron density dependence of the composite

emission coeff icient. At a density of 1.0 x 1012 cm-3, the contribution due to He2+ and

Be4+ ions are respectively 3.94 and 7.82%. These increase to a maximum value of

8.02 and 16.78 % at a density of 1.0 x 1015 cm-3.

The last plasma which we consider consists of 93% D+, 2 % He2+, 2% Be4+

and 3% C6+, see figure 4.25.
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Figure 4.25   A plot of the Balmer-alpha effective emission coeff icient for a composite plasma

consisting of 93 % D+, 2% He2+, 2% Be4+ and 3% C6+. The plot on the left shows the energy

dependence of the emission coeff icient. The plot on the right ill ustrates the density dependence. The

ion temperature was 2.0 x 103 eV.

The plot on the left exhibits the energy dependence of the coeff icient while the plot

on the right ill ustrate the corresponding density dependence. If we confine ourselves

with the energy dependence of the effective emission coeff icient. It can be observed

that the contribution to the total emission coeff icient due to the impurity ions

increases as a function of energy. At  5.0 keV amu-1 the contribution due to He2+,

Be4+ and the C6+ ions are respectively 4.73, 10.43 and 25.26 %. We now consider the

electron density dependence of the composite emission coeff icient. It can be

observed that at a density of 3.0 x 1013 cm-3, which is typical the operating density of

present day tokamak devices, the contribution due to the He2+, Be4+ and the C6+ ions

are respectively 4.6, 10.5 and 21.07 %. A total combined contribution to the effective

emission coefficient due to the impurity ions is ∼ 36%.
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4.3.6 Influence of fundamental low level data

In this sub-section we  investigate the influence of the fundamental atomic data on

the effective Balmer-alpha emission coeff icient. The approach adopted is similar to

that of  section 4.2.6, where we individually modify the cross sections associated

with each atomic process for a pure D+ plasma.

We begin by considering the implications of increasing the cross sections for

direct charge exchange and ion impact ionisation by 10 %. The results are shown in

figure 4.26 as a function of beam energy for three different electron densities.

20 40 60 80 100 120

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

 1.0 x 108 cm-3 ( Modi fied database )
 1.0 x 108 cm-3

 3.0 x 1013 cm-3 ( Modi fied database )
 3.0 x 1013 cm-3

 1.0 x 1015 cm-3 ( Modi fied database )
 1.0 x 1015 cm-3

ENERGY ( keV amu-1 )

E
FF

E
C

T
IV

E
   

E
M

IS
S

IO
N

   
C

O
E

FF
IC

IE
N

T
 ( 

x 
10

  -
9  c

m
3  s

-1
 )

Figure 4.26   A plot of the effective emission coeff icient for a pure D+ plasma. The three densities

have been selected to correspond to the coronal,  colli sional-radiative and the high density picture. The

solid lines show the results obtained by increasing the direct charge exchange and ion impact

ionisation cross sections by 10 %. The ion temperature was 2 x 103 eV.

As can be observed, increasing the direct charge exchange and ion impact ionisation

cross sections has a negligible effect. This is such a contrast to the behaviour of the

effective stopping coeff icients. Earlier we saw that such a change in the fundamental

data gave rise to an increase of approximately 8 % in the effective stopping

coefficient.

The influence of the ion impact excitation cross sections is now of interest.

The ion-atom colli sion database contains excitation cross sections from the ground
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state to the n=2,3,4 and n=5 shell . In figure 4.27  we show the results of increasing all

of the excitation cross sections by 20 %, the dashed lines are the results obtained

from the unmodified database.
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Figure 4.27   A plot of the effective emission coeff icient for a pure D+ plasma. The solid lines

ill ustrate the results obtained by increasing all of the ion impact excitation cross sections by  20%. The

dashed lines correspond to the results obtained from the unmodified database. The plasma temperature

was 2.0 x 103 eV.

It can be observed that the influence of the modified data increases as a function of

beam energy and electron density. At 1.0 x 108 cm-3,  the 20 % increase in the

excitation cross sections has given rise to an increase in the emission coeff icient by

2.30 % at 3.0 keV amu-1, which then increases to a maximum value of 13.42 % at

120 keV amu-1. As the electron density is increased, the influence of the modified

data is slightly enhanced. At 1.0 x 1015 cm-3 the effective emission coeff icient

increases from 2.83 % at 3.0 keV amu-1 to 13.55 % at 120 keV amu-1.

It is of interest to identify which excitation rate is primarily responsible for

influencing the effective emission coeff icient. In figure 4.28 we show the results of

individually increasing each of the ion impact excitation cross sections by 20 %.
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Figure 4.28   A plot of the effective emission coeff icient for a pure D+ plasma. The solid lines indicate

the results obtained from modifying the fundamental data, while the dashed lines show the results from

the unmodified database. Working from left to right are the results obtained by increasing the

excitation cross sections from the ground state to the n=2,3 and n=4 shell by 20%.  The plasma

temperature was 2.0 x 103 eV.

The results of increasing the excitation cross sections associated with the ground

state to the n=2,3 and n=4 shell can be observed. The dashed lines represent the

results obtained from the unmodified database. Modifying the colli sional excitation

cross section for the n=1→3 transition has the greatest influence on the effective

emission coeff icient. At a density of 3.0 x 1013 cm-3, an increase of 20 % in this cross

section results in the emission coeff icient increasing from 2.38 % at 3.0 keV amu-1

to 10.66 % at 120.0 keV amu-1. It is worth noting that the influence of the cross

section for the n=1→3 transition was very small on the behaviour of the stopping

coefficient, the most influential data was that associated with the n=1→2 transition.

We now investigate the influence of  the fundamental data which describes

charge exchange and ion impact ionisation associated with the excited states. The

ion-atom colli sion database contains such data for the n=2,3,4 and n=5 shell . In

figure 4.29, we show the results of increasing all of the charge exchange and ion

impact ionisation cross sections by 30%.
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Figure 4.29   A plot of the effective emission coeff icient for a pure D+ plasma. The solid lines show

the results obtained by increasing the cross sections for charge exchange and ion impact ionisation

associated with the excited states by 30 %. The dashed lines are the results from the unmodified

database.

At 1.0 x 108 cm-3, increasing the excited state cross sections has littl e effect. This is

due to the fact that at such low densities the excited states are scarcely populated. As

the electron density is increased, the excited state populations begin to increase and

the influence of the excited state cross sections becomes important. Generally

speaking, an increase in the charge exchange and ion impact ionisation cross sections

associated with the excited states gives rise to  a decrease in the emission coeff icient.

From figure 4.29 , it can be observed that at an electron density of 1.0 x 1015 cm-3 ,

the effective emission coeff icient decreases by 21.8 % at 3.0 keV amu-1. The

influence of the modified data becomes less as the beam energy increases, at 120 keV

amu-1  a difference of 13.98 % can be observed. Interestingly though, the influence of

such data on the effective stopping coefficients was negligible.

In figure 4.30 we show the results of individually increasing the charge

exchange and ion impact ionisation cross sections associated with the excited states

by 30 %.
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Figure 4.30   A plot of the effective emission coeff icient for a pure D+ plasma. The plot on the left

ill ustrates the results of increasing all of the charge exchange cross sections associated with the excited

states by 30 %. The plot on the right shows the influence of increasing the ion impact ionisation cross

sections associated with the excited states by 30 %. The solid lines are the results from the modified

database. The dashed lines are the results from the unmodified database.

If we consider the plot on the left, which shows the results of increasing the charge

exchange cross sections associated with the excited states. It can be observed that as

the beam energy increases, the reduction in the effective emission coeff icient

decreases. This simply reflects the energy dependence of the charge exchange cross

sections.  A similar type of behaviour can be observed on the plot on the right, which

ill ustrates the results of changing the ion impact ionisation cross sections. However

in this case, the decrease in the effective emission coeff icient increases as function of

beam energy.

4.3.7 Conclusion

At the operating densities of current tokamaks, a colli sional-radiative treatment is

also required to evaluate the effective emission coefficients, see figure 4.18.

The neutral beam energy determines the eff iciency of the atomic processes

which contribute to populating the n=3 shell . Electron impact excitation is the
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dominant process in the low energy regime, as the energy is increased ion colli sion

become important, see chapter 2.0.

A change in the plasma temperature alters the relative colli sion velocity

between the beam atoms and the plasma ions. This gives rise to either an increase or

decrease in the effective emission coefficient.

The temperature dependence of the effective emission coeff icient is greater

than that for the effective stopping coeff icients. This is due to the increased role of

electron collisions which contribute to populating the n=3 shell, see figure 4.20.

The nuclear charge of a fully stripped plasma impurity ion governs the

effectiveness at which the ion contributes to depopulating the n=3 shell . For a fixed

electron density, as the nuclear charge of the impurity ion increases, the Balmer-alpha

effective emission coefficient decreases.

We explored the implications of neglecting the impurity content of a plasma

while evaluating effective emission coeff icients. From the composite plasmas that we

considered, we found that each plasma impurity ion contributes substantially to the

effective emission coeff icient. For a composite plasma consisting of 96% D+, 2%

He2+ and 2% Be4+, the minimum contribution to the emission coeff icient from each

impurity ion was respectively  3.94 and 7.82 %. Even for a plasma consisting of 93 %

D+, 2% He2+, 2% Be4+ and 3% C6+, the combined contribution to the emission

coefficient due to all of the impurity ions was as much as ~ 36 %.

The influence of the fundamental data on the behaviour of the emission

coeff icient was investigated. Increasing the cross sections for direct charge exchange

and ion impact ionisation by 10 % had a negligible effect. This is such a contrast to

the behaviour of the effective stopping coefficients, see section 4.2.6.

Modifying the ion impact excitation cross sections gave rise to a maximum

increase in the effective emission coeff icient of 13.55 % . The cross section for the

n=1→3 transition had the greatest influence on the Balmer-alpha emission

coeff icient. Increasing this cross section by 20% gave rise to an increase in the

effective emission which ranged from 2.28 % at 3.0 keV amu-1 to 10.66 % at 120

keV amu-1. It is of interest to point out here that the excitation cross section for the

n=1→3 transition had little effect on the stopping coefficient.
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The influence of charge exchange and ion impact ionisation associated with

the excited states was studied. Increasing the cross sections for these processes

resulted in decreasing the effective emission coeff icient. This was simply due to the

fact that charge exchange and ion impact ionisation associated with the excited states

contributes to depopulating the n=3 shell.

4.4 Application to experimental programs

4.4.1 Introduction

As discussed earlier, there are two methods which may be employed to determine the

neutral beam density at points along the beam line. A numerical attenuation

calculation and an experimental spectroscopic method. The latter involves measuring

the intensity of the D-α light emitted from the excited beam neutrals and is formally

known as beam emission spectroscopy, see chapter 5.0.  The effective beam stopping

coeff icients are employed in the attenuation calculation, whilst the effective Balmer-

alpha emission coeff icients are used to recover the neutral beam density via beam

emission spectroscopy. To satisfy the demands of experimental analysis for inter

pulse reduction of data and physical parameters, for example at JET, there is a

requirement to compute the neutral beam density on a rapid and automatic basis.

Therefore ab intio calculations of the effective stopping or emission coeff icients for

each changed set of plasma conditions in real time are impractical and a method of

constructing and storing fast look up tables of the effective coefficients is sought.

In the following sections we discuss the practical production, archiving and

application of such fast look up tables. A linear combination and interpolation

method for multiple impurity plasmas has been suggested and used by Summers[26].

The effective coeff icients for a plasma containing a variety of impurities are

assembled from a collection of look up tables. Each separate look up table contains

coeff icients calculated for a single impurity species. We examine the accuracy of this

linear combination and interpolation method.
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4.4.2 Production and archiving the derived data

As discussed in detail i n chapter 3.0, the calculation of the effective beam stopping

and emission coeff icients is done using a bundled-nS colli sional-radiative model

called ADAS310. Using ADAS310, very complete calculations of the excited

population structure are in fact performed. The tabulated population structure and the

effective stopping coeff icients are stored as a function of plasma parameters in the

ADAS data format of adf26. The plasma parameters include the neutral beam energy,

electron density, the plasma temperature and impurity species mix ( multiple or

single ). To assemble fast look up tables an interactive program, ADAS312, is

employed to extract the effective stopping and emission coeff icients, this is discussed

in chapter 3.0.  An overview of the production and storage of the derived data is

shown in figure 4.31.

Ion atom
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Specific
ion file
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Eff. beam
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coefficients
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coefficients
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adf26

ADAS310
Calculate
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ADAS312
Process
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for

effective
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Figure 4.31  Schematic overview of the production of the derived coeff icients. Starting with the

fundamental data which is used as input for ADAS310. A detailed calculation of the excited

population structure and effective stopping coeff icients are  performed. The output is tabulated in the

format of ADAS  data type adf26. An interrogation code ADAS312 is then employed to extract the

effective stopping and emission coefficients from the adf26 type file.
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4.4.3 Linear interpolation scheme

The storage of the derived data in both the adf21 and adf22 type files is designed to

economise on the access time of retrieving the stored coeff icients. To achieve this the

coeff icients are stored in a format consisting of a two dimensional scan in energy and

density and a one dimensional scan in temperature. Since the temperature

dependence of the coeff icients is almost independent of the beam energy and density,

the one and two dimensional grid can be used to compute the coeff icient for any

parameter value contained within the tabulated range. The two dimensional scan is

achieved by tabulating the coeff icients as a function of neutral beam energy and

electron density at a fixed reference temperature, while the one dimensional scan is

assembled as a function of temperature at fixed reference values for the beam energy

and electron density. The schematic in figure 4.32 shows the relationship between the

one and two dimensional scan.

T

E b

N e

η(N ,E ,T )re f re f

η(N ,E ,T )e b re f

η(N ,E ,T )re f re f re f

( 2D SC AN )

( 1D SC AN )

Figure 4.32  Illustration of the one and two dimensional scan employed to create compact data sets.

The plasma temperature, neutral beam energy and the electron density are respectively represented

using T, Eb and ne. The subscript ‘ ref’ indicates that the parameter is being treated as a reference value

and is held as a constant.
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To evaluate the effective coeff icient using the one and two dimensional scan the

following relation is then employed,
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where η represents either effective beam stopping or emission coeff icients. The

quantities Eb, ne and T respectively correspond to the beam energy, electron density

and the plasma temperature. The associated superscripts simply indicate the value is

employed as a reference.

4.4.4 Linear combination scheme

In designing compact data sets for the storage of the effective coeff icients, we now

require a method which would allow one to assemble effective coeff icients for a

plasma contaminated with impurities. The method adopted in this work was first

developed by Summers[26] and can be described as a linear combination scheme.

The effective coeff icient data sets  for each fully stripped impurity species up to the

first period are calculated as though the species alone is present in the plasma. A

linear combination of the individual data sets is then used to synthesis a composite

coeff icient for a plasma which may contain a variety of impurity species. The

combination of the pure impurity data sets is based on the assumption that the

contributions from each impurity ion in the plasma are additive. To obtain the total

composite coeff icient one simply adds the contribution from each impurity species

according to there appropriate concentration found in the plasma.  In the case of the

effective beam stopping coeff icients which are calculated in terms of the electron

density. The total stopping coeff icient for a plasma consisting of n impurities is given

as,
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The quantity ne
z0n is the effective electron density due to the nth impurity and is given

by the following expression,

n z f z f
n
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The effective stopping coeff icient due to the nth impurity species is SCR
(z0n) and fZ0n is

the corresponding fraction contained in the plasma, which is specified in terms of the

total electron density, ne. The  beam emission coeff icients are handled in the same

manner.

An interactive program as well as a selection of FORTRAN routines which

implement the linear interpolation and combination method can be found in ADAS.

The interactive program, ADAS304[26], is designed to allow one to interactively

assemble either effective stopping or emission coeff icients for a composite plasma

using the pure impurity data sets. The selection of FORTRAN routines enable one to

directly  implement the linear combination method in an experimental analysis

program.

4.4.5 Accuracy of the linear combination and interpolation scheme

In this section we investigate the accuracy of the linear interpolation and combination

scheme. This is achieved by simply comparing our results obtained from the true

calculation of ADAS310 with the linear methods of ADAS304. We first consider

effective beam stopping coeff icients and then extend our study to include effective

beam emission coeff icients. In both cases we have considered a wide range of

scenarios but only summarise the main features here.

4.4.5.1   Effective beam stopping coefficients

In the following series of examples we show the percentage difference between the

results obtained from the true calculation and the linear combination and

interpolation method. It is convenient to consider the accuracy of the linear

combination and interpolation method separately. This can be achieved by first

studying the assembly of the effective coeff icients  using a temperature which
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corresponds to the reference temperature. Therefore the linear interpolation along the

one dimensional temperature grid is suppressed. This allows us to investigate the

accuracy of the linear combination method. We can then study the assembly of the

effective stopping coeff icients under conditions which requires the linear

interpolation along the one dimensional temperature grid. This enables us to study

the combine accuracy of both linear methods.

The first hypothetical plasma that we consider consist of 75 % D+ and 25 %

Be4+. The impurity content of the plasma has been exaggerated to ill ustrate the

accuracy of the linear methods under extreme conditions. We show in figure 4.33, as

a function of beam energy  the accuracy of the linear combination method for a range

of electron densities. The plasma temperature has been selected to correspond to the

reference temperature
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Figure 4.33   A plot of the percentage difference between the output from ADAS304 & ADAS310.

The above ill ustrates that accuracy of the linear assembly performed by ADAS304, a maximum

difference of  1.79 %  can be observed . The reference density and temperature are respectively  6.78

× 1010 cm-3 and 2.0 x 103 eV.

A maximum difference between the results of ADAS310 and ADAS304 of 1.79 %

can be observed. We now consider the evaluation of the effective coeff icients using

both the linear interpolation and combination method. In figure 4.34 we show the
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results as a function of energy for a range of temperatures. Therefore interpolation

along the temperature grid is required.
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Figure 4.34  A plot of the percentage difference between the output of ADAS304 & ADAS310. Using

a reference temperature of 2 × 103 eV , the maximum difference can be observed to be 1.96 %.

However below 2 × 103 eV amu-1 the difference rises to 2.64 % and continues to reach a peak of 20.70

% at 100 eV amu-1  . The electron density  was set to a value of 1 × 1012 cm-3 and the reference density

was 6.78  × 1010 cm-3.

Above 2.0 keV amu-1 a maximum difference of 1.96 % can be observed, however

below this energy value the difference rises to a peak of 20.70 % at 100 eV amu-1.

We now extend our investigation by considering a more complicated plasma. The

plasma which is under scrutiny consists of 70% D+, 20% C6+ and 10% Be4+.  The

accuracy of the linear combination method is first considered, see  figure 4.35. A

maximum difference of 1.86 % can be observed between the results obtained from

ADAS310 and ADAS304. In figure 4.36 we show the accuracy of both the linear

interpolation and combination method. Above 2.0 keV amu-1 a difference of 2.33 %

can be seen. This difference  decreases as the beam energy increases. As mentioned

earlier, we have undertaken a wide study and a similar accuracy obtained by the

linear methods was observed.
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Figure 4.35  A plot of the percentage difference between the output of ADAS304 & ADAS310. The

maximum difference seen above is 1.86 %, below 2 × 103 eV amu-1 this difference rises to 2.514 %.

The electron density was set to a value of  1 × 1012 cm-3 and the reference density was 6.78  × 1010 cm-

3.
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Figure 4.36   A plot of the percentage difference between ADAS304 & ADAS310. Using a reference

temperature of  2  × 103 eV, the maximum difference that can be observed is 2.33 %, however  below

2 × 103 eV amu-1 the difference rises to 5.86 % and continues to reach a value of 23 % at 100 eV amu-1

. The electron density  was set to a value of 1 × 1012 cm-3  and the reference density was 6.78  × 1010

cm-3.
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4.4.5.2   Effective beam emission coefficients

We now turn our attention to the accuracy of the linear combination and interpolation

method when used to assemble  effective emission coeff icients for a composite

plasma. The approach adopted here is much the same as with the effective stopping

coeff icients. We first consider the accuracy of the linear combination method and

then we study the combined accuracy of both linear methods. It is expected here that

the accuracy of the linear methods will be less due to the increased temperature

dependence associated with the effective emission coefficient.

We first consider a plasma consisting of 75% D+ and 25% Be4+. The results

can be seen in figure 4.37 as a function of beam energy for a range of densities. The

temperature has been selected to correspond to the reference temperature, therefore

no interpolation along the temperature grid is required and the results in figure 4.37

simply reflect the accuracy of the linear combination method.
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Figure 4.37   Percentage difference between the results from ADAS310 and ADAS304. The

temperature was 2.0 x 103 eV and the reference values for the beam energy and electron density were

respectively 4.0 x 104 eV amu-1 and 6.78 x 1011 cm-3.

At a density and beam energy of  1.0 x 1012 cm-3  and 25 keV amu-1 respectively, a

maximum difference of 19.46 % can be observed. We now investigate the combine

accuracy of the linear interpolation and combination. In figure 4.38 we show the

difference between the results obtained from ADAS310 and ADAS304 as a function
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of beam energy for a range of temperatures. In this case, interpolation using the one

dimensional temperature grid is required.

-30

-20

-10

0

10

20

0.25x105 0.50x105 0.75x105 1.00x105

5.0 x 103 eV
2.0 x 103 eV
1.0 x 103 eV
5.0 x 102 eV
2.0 x 102 eV
1.0 x 102 eV

NEUTRAL BEAM ENERGY ( eV amu-1 )

%
 D

IF
F

E
R

E
N

C
E

Figure 4.38  Percentage difference between the results obtained by ADAS310 and ADAS304. The

reference values for the temperature, beam energy and density were respectively 2.0 x 103 eV, 40 keV

amu-1 and 6.78 x 1011 cm-3.

As can be observed, a maximum difference of  25 % occurs at a temperature of 100

eV and a beam energy of 15 keV amu-1. However, this difference decreases  as the

neutral beam energy  increases.

We now extend our study by considering a slightly different plasma. The

plasma which is of interest now consists of  70% D+,  20% C6+ and 10% Be4+. In

figure 4.39 we show the accuracy of the linear combination method where the

temperature has been selected to avoid any interpolation along the temperature grid.
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Figure 4.39  Percentage difference between the results obtained from ADAS310 and ADAS304. The

composite plasma consist of  70% D+,  20% C6+ and 10% Be4+. The  reference values for the

temperature, beam energy and density were respectively 2.0 x 103 eV, 40 keV amu-1 and 6.78 x 1011

cm-3.

A maximum difference of  19.86 % at 1.0 x 1015 cm-3 can be seen. We now show in

figure 4.40 the results where the linear interpolation along the one dimensional

temperature grid is required.
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Figure 4.40  Percentage difference between the results obtained by ADAS310 and ADAS304. The

reference values for the temperature, beam energy and density were respectively 2.0 x 103 eV, 6.67 x

1011 cm-3 and 40 keV amu-1.

A difference of  21.75 % can be observed at a temperature of 100 eV and similar

results can be observed for different composite plasmas.
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4.4.6 Conclusion

The creation of compact look up tables enables effective stopping and emission data

to be available for routine experimental analysis. The linear combination  and

interpolation method is successful at assembling effective stopping or emission

coefficients for typical composite plasma with speed and reasonable accuracy.

In the case of the effective beam stopping coeff icients, the linear combination

and interpolation scheme proved to be capable of rapidly assembling composite

coeff icients which were within 5 % of the values obtained from ADAS310. This

level of accuracy however was not retained when we considered the effective

emission coeff icients. On average, the linear combination and interpolation method

could only assemble a composite emission coeff icient which was within 20% of the

value obtained from the calculation of ADAS310. However this level of accuracy is

sufficient for the present application.
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5.0   Beam emission spectroscopy at JET

5.1   Historical overview

Observations of the D-α emission feature emitted by excited  beam neutrals was first

recorded at JET Joint Undertaking[59] and then subsequently studied on other fusion

devices[60,61]. Due to the unique nature of the Stark resolved spectrum, the

diagnostic application of the D-α  beam emission feature provided a means of

measuring a novel set of important plasma parameters[62]. Information regarding the

internal magnetic field structure [61,63,64,65,66] and ion density fluctuations of the

plasma [67,68] were the first quantities studied using beam emission spectroscopy .

However progress in exploiting the beam emission signal to obtain

information on the neutral beam density was slow. The  neutral beam density is an

important plasma parameter which beam emission spectroscopy was envisaged to

yield. It is a key piece of information required to validate the impurity content of the

plasma deduced via charge exchange spectroscopy[69] and modelled beam stopping.

Prior to the discovery of the diagnostic implications of the beam emission

signal, the neutral beam density could only be obtained from an attenuation

calculation for the rate at which the neutral beam atoms were being ionised as the

beam traversed the plasma.  As discussed by von Hellermann[70] the accuracy of this

method is limited by error ampli fication, particularly in high density plasma scenarios

such as the anticipated operating regime of ITER[71]. Therefore the possibilit y of

utili sing the beam emission signal to provide a local accurate measurement of the

neutral beam density was encouraging.

The first detailed attempt to exploit the beam emission signal following the

initial work of Boileau[62] at JET was by Mandl[20,72]. Mandl explored the

feasibilit y of utili sing the beam emission spectrum to deduce the neutral beam density

as well as other parameters such as the magnetic field strength, the divergence and

energy composition of the beam as well as the location of the observation volume.

His work focused on the beam emission signal originating from single beam bank

pulses where the observed spectra, even though complicated, were in their simplest

form. He suggested that it was possible to deduce the neutral beam density reliably for

single bank pulses and that beam emission spectroscopy certainly had the potential to

replace the numerical attenuation calculation. However single bank pulses only
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constitute a minority of pulses at JET, high power double beam bank pulses are more

common. Also Mandl’s analysis, though fruitful, was in fact limited to just one pulse.

The aim of the present work was to extend the analysis to include double beam bank

scenarios.

Since the work of Mandl in 1991, the beam emission diagnostic had been

relocated to a different observation port. The status of the diagnostic after the

appropriate modifications were implemented was such that the neutral beam density

inferred from the beam emission spectra differed from the values obtained from the

numerical attenuation calculation, in many cases by up to a factor of two. This was

such a contrast to the original results reported by Mandl that there  was an obvious

need to revisit each stage of the analysis to investigate the nature of the discrepancy.

In this work we address this issue while focusing our attention on the analysis

of the beam emission spectra originating from single and double beam bank pulses.

5.2 The JET beam emission spectroscopy diagnostic

5.2.1   Diagnostic apparatus

The beam emission spectrum at JET is recorded using a back ill uminated  CCD

camera. A fan of twelve  fibre optics are focused along the trajectory associated with

injectors 6 and 7 of octant eight from the diagnostic port  illustrated in figure 5.1.

Injectors  6 and 7 are members of the normal and tangential bank respectively and

conveniently share a similar trajectory as can also be seen  in figure 5.1. Each of the

twelve fibre optics are employed to relay the D-α emission feature back to a Czerny-

Turner type spectrometer ( KS5b ). On leaving the exit slit of the spectrometer the

emission feature is then focused onto the CCD camera. The signals recorded by the

camera are then collected and stored awaiting analysis.  A  schematic overview of  the

diagnostic system is shown in figure 5.2 and a detailed description can be found in

[66] and references therein.
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Figure 5.1   Plan view and side elevation of the tokamak. The figure on the left ill ustrates the location

of the observation ports for charge exchange and beam emission spectroscopy. The figure on the right

shows the typical trajectories of each neutral injector, particular attention should be drawn to the

diagnostic injectors 6 and 7 which are annotated.

Figure 5.2   Schematic overview of the diagnostic system employed to measure both the neutral beam

density and the impurity content of the plasma. Situated on octant one, a fan of twelve fibre optics

focused along the trajectory of the neutral beams are used to relay the D-α emission feature back to a

Czerny-Turner type spectrometer ( KS5b ). On leaving the exit slit of the spectrometer the emission

feature is recorded via a back illuminated CCD camera.
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5.2.2   Observed beam emission spectrum

The primary beam emission observation is of a series of overlapped Doppler shifted

Stark multiplet features. The appearance of the 6560 - 6620 
�

 spectral interval for a

single bank pulse is shown in figure 5.3,
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Figure 5.3   Observed motional Stark D-α feature. The emission feature was recorded during the JET

pulse 35718 using track 4 of the multichord system. The tangential bank was active with a primary

energy of 140 KeV/amu. The constrained multi -gaussian fit is also shown. Particular attention should

be brought to the annotation of the full , half and third σ0 Stark components. Due to the existence of the

three fractional energy components in the beam this gives rise to three Stark multiplets. Each Stark

multiplet is Doppler shifted according to the velocity of the relevant beam neutrals and as a result the

overall picture is an overlap of each Stark feature.

where only one diagnostic neutral injector (‘pini’) is active. The existence of three

fractional energy components in each diagnostic injector gives rise to three Stark

multiplet features. Each Stark multiplet is Doppler shifted according to the velocity of

the relevant energy component and the viewing angle between the neutral injector and

the line of sight. The fractional energy components in each injector are due to the

production of D+ , D+
2 and D+

3 during ion generation[73]. As the ions are neutralised

their different atomic masses contribute to producing three energy components, i.e. a

full energy E0, half energy E0/2 and  a third energy E0/3 component.
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The salient features of the spectrum as we move in the direction of increasing

wavelength commences with the large D-α edge emission line situated at 6560 � . The

origin of this is the presence of partially ionised species between the last closed

magnetic flux surface and the vessel wall .  Next we  encounter a cluster of Stark

multiplet features which are collectively known as the beam emission spectrum. Each

Stark multiplet feature consists of nine observable Stark components ( up to ±π4 ).

The higher order components of the Stark resolved spectrum are too weak in intensity

to observe reliably.

The beam emission spectrum is highly determined. The local magnetic field

orthogonal to the neutral beam particle path together with precisely known velocities

of the energy fractions determines the wavelength separation of the Stark components.

The relative intensities of the σ and π  polarisation components are also determined

since Stark fine structure populations are fully mixed at the JET core plasma densities

( > 2 × 1013 cm-3) and the geometry is specified.

In the case of double beam bank pulses, which are more common, the

recorded beam emission spectrum originates from the excited beam neutrals of two

diagnostic injectors so that the spectrum comprises of six overlapping Stark multiplet

features. In figure 5.4, the beam emission spectrum during the single bank period of

the pulse 32969 showing the three Stark multiplets increases in complexity suddenly

during the double beam bank period of the pulse.

In both the single and double bank spectra, additional spectral li nes in the

vicinity of the beam emission spectrum can also be observed, particularly near the

base of the D-α edge emission line, see figure 5.3. Our concern here however is with

the Stark multiplet features of the beam emission spectrum ( see [20] for a detailed

description of the full spectrum ) .
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Figure 5.4    Complexity of the beam emission signature. Top left hand figure shows the beam

emission feature during a  single bank period of the pulse 32969. The figure at the bottom left

ill ustrates the increasing complexity of the observed spectrum  during  the double beam bank period.

The single figure to the right shows the power associated with each diagnostic injector and the time

interval when the single or double bank scenario is in operation.

5.2.3   Experimental analysis

5.2.3.1   Method and objectives

The analysis of the beam emission feature involves generating a synthetic model

spectrum based on measured and calculated parameters. The synthetic spectrum is

then employed to extract the total flux associated with each Stark multiplet contained

within the spectrum. The total flux together with knowledge of the electron density
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and the effective beam emission coeff icient enables the neutral beam density to be

recovered from the beam emission spectrum. At JET a computer program written in

FORTRAN 77 is employed to automate the spectral analysis. The program was

originally written by Mandl[20] and extended by English[74] and Howman[75] to

include the analysis of the spectral originating from the excited neutrals of two active

injectors. The procedure consists of two stages as illustrated in figure 5.5.

SP E C T R A L
AN A LY SIS

C H E A P
AN A LY SIS

E X P E R IM E N TA L
O B S E R VAT IO N S

LIN E IN T E G R AT E D
N E U T R A L B E A M

D E N S IT Y

Figure 5.5   Overview of the two stage procedure involved in obtaining the line integrated neutral

beam density. The first stage involves running the spectral analysis code to obtain the total flux from

each Stark multiplet. The second stage of the analysis involves evaluating the neutral beam density

using the flux measurements together with derived atomic data.

The first stage uses the spectral analysis program to extract the total flux associated

with each Stark multiplet. The second stage is a post processing step. The post

processing code, which is known as the Charge Exchange Analysis Package ( CHEAP

), evaluates the neutral beam density using the flux measurements. The CHEAP code

was written in FORTRAN 77 by von Hellermann[59] and serves as the main analysis

tool for the core spectroscopy group at JET ( see section 5.3 ).

5.2.3.2   Motional Stark Effect

The motional Stark effect is the descriptive name for the Stark effect when atoms

move through a magnetic field and experience a Lorentz electric field within their

own frame of reference. The Lorentz electric field acts as a perturbation on the atom’s
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Hamiltonian and influences the wavelength and intensities of the emission. Neutral

deuterium beam atoms, which cross the confining magnetic field of the JET tokamak

with a typical velocity of around 106 m s-1, experience an electric field of up to 106

Vm-1. In this regime the linear Stark effect is dominant and the influence of the

electric field removes the degeneracy associated with each hydrogenic energy level.

This gives rises to a Stark resolved energy level structure where the splitti ng of the

energy levels is directly proportional to the electric field. As discussed by

Sobelman[76] the splitting of the energy levels are given by,

∆E n n n eE aL= −3

2 1 2 0( ) 5.1

where n1 and n2 are the so-called parabolic quantum numbers and EL is magnitude of

the Lorentz electric field. In figure 5.6 we show a schematic for the transition from a

degenerate energy level structure to a Stark resolved picture for neutral hydrogen.

Also shown are the expected emission patterns.
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Figure 5.6   Influence of an external electric field on the degenerate energy levels of hydrogen. The

electric field acts as a perturbation and removes the degeneracy associated with each energy level and

gives rise to a Stark resolved energy level structure. The schematic ill ustrates the transition from a

degenerate energy level structure to a Stark resolved picture showing the subsequent emission patterns.

5.2.3.3  Spectral analysis
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The analysis of the beam emission spectrum involves identifying the position and

amplitude of every feature contained within the spectrum region. Each feature is then

represented by a Gaussian specified by width and amplitude. The array of Gaussians

which collectively represent all of the individual spectral features is then used to

construct a synthetic spectrum which is adjusted to extract the flux associated with

each Stark multiplet.

The analysis program first accesses  the JET pulse process file database

system[77] to ascertain the atomic mass  and velocity of the beam species. The

program then searches the spectrum for the D-α edge emission line. Since this

emission originates from the edge of the vessel it i s free of any Doppler shift from the

bulk motion of the plasma. It is utilised as a wavelength reference.

The spectral analysis code then attempts to locate the position of the Doppler

shifted primary σ0  Stark components associated with each Stark multiplet. The

position of each primary Stark component is determined by the velocity, vb, of the

relevant energy fraction and the viewing angle, α, between the neutral injectors and

the line of sight. Mandl[20] expresses the  Doppler shifted wavelength as,

∆λ λ αDOPPLER c
= 0

v b cos( ) 5.2

where λ0 is the natural wavelength.

The location of the remaining Stark components for each multiplet are

identified by assuming the Stark splitti ng is constant over the spectral region. The

Stark splitting is then evaluated using the following expression,

∆λ λSTARK L

ea

hc
E= 3

2
0 2

5.3

where λ is the unperturbed wavelength. The analysis program obtains estimates for

the electric field using the results from magnetic equili brium calculations[78] together

with knowledge of the beam velocity and experimental geometry. The position of the

components are then specified relative to the appropriate Doppler shifted primary

Stark feature, as illustrated in figure 5.7 for a single multiplet.
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∆λ∆λ
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Figure 5.7   Schematic ill ustration of how the primary Stark component for a single multiplet feature is

fixed relative to the D-α edge emission line and the remaining Stark components are then specified

relative to the primary Stark component by the wavelength separation due to the linear Stark effect.

The next step for the analysis program is to obtain amplitudes for the

Guassians used to represent  each spectral feature. The amplitudes of the Gaussians

for the primary σ0  Stark components in both single and double bank spectra are

treated as the search parameters of the fit, whilst the amplitudes of the Gaussians for

the remaining Stark features are specified by a parametric relationship to the σ0

components. This relationship is based on intensity  ratios of individual Stark

components  which are entered by the user as input[74].

The resulting parameterised array of Gaussians is optimised by the NAG

routine E04UPF to obtain a  best fit synthetic spectrum to the experimentally

observed spectrum. The degree of accuracy of the fit is monitored and after each

spectrum is analysed a diagnostic report is automatically written to a file which

includes the NAG error flag for the success of the fitting procedure[79]. It should be

noted that the analysis program also addresses the spectral li nes which can be

observed near the base of the D-α edge emission feature.



133

5.3 The Charge Exchange Analysis Package

5.3.1   The role of the charge exchange analysis package

The charge exchange analysis package ( CHEAP ) is a computational tool employed

at JET to automate the process of combining spectroscopic observations, derived

atomic data and experimental conditions to infer self consistently various plasma

parameters. The main application of CHEAP is the deduction of absolute impurity

concentrations via charge exchange emission measurements, which are recorded

using the apparatus shown in figure 5.2.A schematic overview of CHEAP ill ustrating

the flow of derived atomic data and experimental observations is shown in figure 5.8
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Te , N e P R O F IL E S e tc .
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Figure 5.8   Schematic overview of  the Charge Exchange Analysis Package, CHEAP. The deduction

of the impurity content of the plasma within CHEAP involves utili sing charge exchange emission flux

measurements together with derived atomic data. The assembly of the neutral beam density using the
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flux measurements from the beam emission signal as well as the attenuation calculation is carried out

within CHEAP.

5.3.2   Iterative path to absolute impurity concentrations

The charge exchange spectroscopy diagnostic at JET utili ses the subsequent emission

by impurity ions following the capture of an electron to obtain information on the

impurity content of the plasma. The impurity concentration of a species of nuclear

charge z0, as discussed in chapter 1.0, is given as

n
d

q n ds
z

CX

cx b
0

4
= ∫

∫
π λ λΦ ( )

       5.4

where Φcx  is the recorded charge exchange flux, qcx is the effective charge exchange

emission coefficient[19] and ∫nbds is the line integrated neutral beam density.

Evaluation of  the line integrated neutral beam density from either the

attenuation calculation or the beam emission spectrum requires prior knowledge of

the impurity densities in the plasma to enable the relevant effective coeff icients to be

evaluated.  This requires  an iterative approach for the concentration of the different

impurities in the plasma to be inferred via charge exchange spectroscopy. The

CHEAP package implements such an iterative calculation making use of

bremsstrahlung and charge exchange flux measurements together with derived atomic

data, see figure 5.8.  To reconstruct the radial density profiles for each impurity

CHEAP begins by estimating the impurity content of the plasma. This estimate is

obtained from the bremsstrahlung observations along the vertical li ne of sight shown

in figure 5.2. The measurement enables the line integrated effective ion charge of the

plasma  to be inferred using the following equation[80],
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where gIII  is the free-free Gaunt factor and φbrems is the intensity of the emission. It is

then assumed that the contribution to the bremsstrahlung emission is due to the
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presence of only one impurity in the plasma. This is the dominant impurity ( normally

known ) such as carbon. The value obtained for < Zeff >, is then used as a first

approximation in the following expression for the local ion charge, Zeff.

Z Z Z
n

neff i i
i

ei

= + −∑1 1( ) 5.6

This enables the carbon concentration to be estimated. Measurements of the

bremsstrahlung emission are repeated. This time the contribution to the emission is

assumed to be due to the presence of carbon and an additional impurity. The impurity

density for each species is thus calculated  using the first estimate for the carbon

concentration as a starting point. This procedure is continued until all the main

impurities have been included and a stable solution for the vertical li ne of sight has

been obtained.

The reconstruction of the radial density profiles can now be considered. The

present implementation of CHEAP employs the theoretical  attenuation calculation to

evaluate the neutral beam density during the analysis. Using the values for the

impurity content of the plasma obtained from the vertical li ne of sight as an initial

guess, the effective stopping coeff icients are evaluated to obtain the neutral beam

density. Together with knowledge of the neutral beam density and the charge

exchange flux measurements a new set of values for the impurity content of the

plasma can be calculated. These are then used to evaluate new stopping coeff icients

and the process continues until a converged solution for the impurity concentrations

has been achieved.

5.3.3 Evaluation of the neutral beam density

An eff icient method to calculate the neutral beam density is required for the impurity

concentrations to be deduced within a reasonable time scale.  This is done by

acquiring the theoretical data through the linear interpolation and combination method

with look up tables as discussed in chapter 4.0.
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5.3.3.1   Numerical attenuation calculation

Utili sing the rapid look up tables of type adf21, the CHEAP code assembles effective

stopping coeff icients for a composite plasma as a function of temperature, density and

neutral beam energy ( Te, ne and Eb ). In the case of a single injector the neutral beam

density as a function of radial position, ρ, can then be obtained using the following

relation,

n n n
S n E T

v
dlb e

CR i b e

b

( ) exp(
( , )

),ρ
ρ

= −∫0

1

5.7

where dl is along the path taken by the neutral beam, SCR is the effective stopping

coeff icient in terms of the ion density, and n0 is the initial beam density on entry to the

plasma.

For charge exchange spectroscopy, we require the line integrated neutral beam

density i.e. ∫nbds, where ds is along the line of sight across the neutral beam profile.

Test bed measurements[81] show that the neutral beam density distribution at JET

can be described by a Gaussian which has a full width half maxima ( FWHM ) in the

x and y plane of wx and wy  respectively, see figure 5.9.
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Figure 5.9   An ill ustration of a single beam showing the natural beam divergence . Also shown is the

Gaussian distribution in both the x and y plane which is used to describe the neutral beam density

distribution of the beam.
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Therefore the line integrated neutral beam density evaluated by CHEAP is,
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The FWHM of the Gaussian in the x and y plane at any radial position is

obtained by assuming that the beam source is a point[81]. The values for the beam

divergence can then be used to obtain the widths, wx and wy. The electron density is

obtained from Thomson scattering measurements from the LIDAR diagnostic[82].

The initial beam density, n0, is obtained from calorimetry measurements of the beam

current in the neutral injector[83].

5.3.3.2   Spectroscopic measurement

The CHEAP code employs the look up tables of type adf22 to assemble effective

beam emission coeff icients for a composite plasma. The relationship between the

beam emission flux and the line integrated neutral beam density as evaluated by

CHEAP for a single injector is,
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where I(E0k) is the flux associated with the Stark multiplet corresponding to the

fractional energy component k , q(ne,Te,E0k) is the effective D-α beam emission

coeff icient and χ is the window transmission factor. The latter is used to compensate

for the observation window being optically degraded by the deposition of impurities.

It is evaluated by comparing the < Zeff > inferred from the bremsstrahlung

measurements recorded from the charge exchange diagnostic port and the vertical li ne

of sight as shown in figure 5.2. The observation port for the vertical li ne of sight is a

considerable distance away from the plasma and the window is assumed to be free of

any optical degradation. A detail discussion of the cross calibration technique is given

by Morsi et. al.[9].
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5.4    Examination of the analysis procedure

5.4.1   Overview

To address the nature of the discrepancy between the neutral beam density inferred

from the numerical attenuation calculation and the beam emission signature, a

systematic approach was adopted which involved investigating each stage of the

analysis. There were three areas of uncertainty, namely the spectral analysis, the

CHEAP analysis and the derived atomic data. Our strategy involved investigating

each area in turn in an attempt to identify the source of the discrepancy.

5.4.2  The spectral analysis

Due to the large quantity of spectral data to be analysed on a daily basis at JET, the

spectral analysis program operates in a batch mode. In this mode the program

automatically analyses every spectrum recorded over the duration of a particular pulse

selected by the user.

To operate the analysis code in this manner involved configuring the input

parameters to ensure that the synthetic spectra generated by the code would give an

accurate fit to all of the recorded spectra. In practise this was achieved by considering

a few spectra from different time frames and lines of sight. It was then assumed that

the optimum input parameters obtained would then be valid for the analysis of all the

other spectra.

We found that some of the spectra were not being fitted to the required

accuracy. The  acceptance criteria of the goodness of f it from the NAG algorithm was

to loose. The failure rate was sensitive to poor input parameter choice such as

ignoring the variabilit y between different lines of sight. Also the temporal variation of

the  CII passive emission lines which pollute the beam emission signal, see figure 1.5,

were not taken into account. During observations the intensity of these lines would

unpredictably become stronger or weaker and directly influence the success of the

fitting procedure. The obvious solution would be to check each spectrum individually

but this would be impractical due to the large volume of data. An alternative approach

was sought.

In all of the spectra associated with single bank pulses, it was observed that

the +π3 and +π4 Stark components of the full energy fraction were separated from the
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dense cluster of Stark lines, see figure 5.3 . As suggested by Howman[75], the fit

could be biased in favour of these two components ( while neglecting the remaining

features ) and together with knowledge of the intensity ratios of the remaining Stark

components, the total flux associated with the full energy fraction could be

reconstructed. The total flux for the Stark multiplet feature due to the full energy

fraction of a single injector, assuming that the feature is symmetrical around the

primary σ0 component,  is given as,

ΦTotal = + + + +2 23 4 2 1 0
φ φ φ φ φπ π π σ σ 5.10

This expression can be reduced to a simple relation involving  the measurement of the

flux associated with only  the +π3 and +π4  Stark components,

[ ]Φ Total = +κ φ φπ π3 4       5.11

where κ is a constant obtained from the intensity ratios of the remaining Stark lines.

The contribution to the neutral beam density due to the full energy fraction

could  be recovered from the spectrum while reducing the number of spectral features

which are taken into account. To obtain the contribution to the neutral beam density

from the remaining fractional energy components, Howman[75] suggested that one

could use the following relation.
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where NTheory 
E0/k  is the contribution to the total beam density due to the  fractional

energy component k, which is obtained from the attenuation calculation.  NMeasured
E0 is

the contribution to the total neutral beam density due to the full energy fraction which

is obtained from the +π3 and +π4 Stark components.

This method could also be extended to include the analysis spectra associated

with double beam bank pulses. In which case the line ratios of the Stark components

are assumed to be identical for each bank and the reconstruction of the flux associated

with each full energy component is carried out in the same manner.

As part of a  feasibilit y study we implemented this method in an attempt to

improve the reliabilit y of the spectral fitting . To obtain a value for κ we conducted a
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statistical survey of the experimental data from which we obtained the line ratios

shown in table 5.1, also shown in the table are the theoretical values predicted by

Mandl[20].

Ratio Experimental Theoretical

σ1/σ0 0.430 0.353

π3/σ0 0.550 0.421

π2/σ0 0.195 0.133

π4/σ0 0.450 0.307

Table 5.1   Experimental and theoretical li ne intensity ratios of the Stark components. The

experimental values were obtained from a statistical analysis of the observed spectra. The theoretical

values were obtained from the work of Mandl[20].

Using the values contained in table 5.1, this gave  κ a value of  3.625 .We conducted a

detailed study of the analysis using the +π3 and +π4 components to conclude that it

was more reliable than the existing method. The existing method which involved

extracting the flux associated with each individual Stark component is more

applicable when the analysis of the spectra is done on an interactive basis rather than

in a batch mode. We decided to continue  the  +π3 and +π4 method on a permanent

basis. Nonetheless by adopting this new approach we have lost important diagnostic

information concerning the half and third energy components. We had originally

planned to used the fractional Stark components to verify the energy dependence of

the  effective emission coeff icients and hence the fundamental cross section data. This

opportunity is no longer available.

5.4.3 The CHEAP analysis

The CHEAP package utili ses a vast amount of derived atomic data and anxieties

regarding the correct use of the atomic data was of immediate concern. A careful

study of CHEAP revealed an error in the implementation of the linear combination
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method. This was corrected. This error did not have any significant impact on the

discrepancy between the measured and calculated beam density.

5.4.4 Review of the fundamental and derived atomic data.

In this section we summarise the results obtained by reviewing the fundamental

atomic data which is used as input to calculate the effective stopping and emission

coeff icients. Due to the energy regime of the JET heating beams, the ion-atom

colli sions govern the population structure and  hence  the attenuation. Therefore we

restricted ourselves to the fundamental atomic data concerning ion-atom collisions.

The atomic database containing ion-atom colli sion cross sections, which is of

the ADAS data format of adf02, was constructed in 1989 and periodically updated

until 1993. Using the best available data we updated  this data base, a detailed account

can be found in appendix A. As an example we contrast the new 1997 cross-section

data for ion impact ionisation from the n=3 shell of the beam neutrals with the 1989

data, see figure 5.10. At the operating densities of the JET tokamak, the role of

ionisation from the excited states of the beam atoms is significant. A point to note is

that the new 1997 database contains more accurate cross-sections for atomic

processes  associated with excited states which were not available when the 1989

database was compiled.

Using the new ion-atom colli sion database we then calculated new effective

stopping and emission data for all of the fully stripped impurities up to the first

period. In Figure 5.11 and 5.12  we ill ustrate the influence of the revised ion-atom

colli sion data on both the effective Balmer-alpha emission coeff icient and the line

integrated neutral beam density deduced from the beam emission spectrum.
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Figure 5.10   Ion impact ionisation cross section Vs energy. The 1997 data is based on the data

compiled by Janev & Smith [Janev R K, Smith J J, J. Nucl. Fusion ( Supplement), Vol.4,1993 ].

Figure 5.11   The Balmer-alpha effective emission coeff icient for a pure D+ plasma calculated using

the 1989 and 1997 ion-atom colli sion database. The electron temperature is 1 x 103 eV and the electron

density is 1 x 1013 cm-3.
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Figure 5.12   Line integrated neutral beam density for three different time periods obtained from the

beam emission signal. The plot shows the direct influence of the fundamental data on the effective

emission coefficient and hence the line integrated neutral beam density.

As can be observed from figure 5.11, the influence of the fundamental data on the

effective Balmer-alpha coeff icient is substantial. Using the new effective emission

coeff icients an average change of approximately 30 % in the neutral beam density

inferred from the beam emission spectrum can be seen in figure 5.12.

We now ill ustrate the influence of the revised ion-atom colli sion data on the

effective stopping coeff icient and the line integrated neutral beam density obtained

from the attenuation calculation, see figures 5.13 and 5.14 respectively.
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Figure 5.13   Comparison between the effective stopping coeff icients calculated using the 1989 and

1997 ion-atom colli sion database. The plasma density was 1.0 x 1013 cm-3 and the temperature was 1.0

x 103 eV. As can be observed the change with the revised 1997 data is small.

Figure 5.14   The line integrated neutral beam density for three different time periods evaluated using

the attenuation calculation with the 1989 and 1997 data.
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As can be seen in figure 5.13, the influence of the revised atomic data on the

effective stopping coeff icient and hence the line integrated neutral beam density

obtained from the attenuation calculation is small , see figure 5.14. The new 1997 ion-

atom colli sion database includes more accurate cross sections describing the atomic

processes associated with the excited states.  The changes in such cross sections

contributes very littl e to the effective stopping coeff icients since less than 1% of the

beam neutrals are in their excited state, see figure 5.15.

Figure 5.15   Population of the excited states relative to the ground state of the beam neutrals  for a

pure D+ plasma.  The plasma density  and temperature are respectively 6 x 1013 cm-3 and 2 keV. As can

be observed the population of the excited states is less than 1% of  the ground population.

5.4.5 Conclusion

The original approach of analysing the beam emission spectrum by fitting all the

Stark components proved to be unreliable when done in an unsupervised batch mode.

A more reliable method was implemented which relies on reconstructing the flux

from a fit of only the +π3 and +π4 components.

The review of the fundamental atomic data has led to a more accurate

description  of the behaviour of the atomic processes associated with the excited

states. The revised atomic data has a substantial influence on the effective emission

coeff icients and hence the neutral beam density obtained from the beam emission
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spectrum. The revised data had a much smaller effect on the effective stopping

coefficients and hence the attenuation calculation.

5.5 Results

 In this section we show separately the  results obtained from the analysis of spectra

recorded during single and double beam bank pulses. In both cases we compare the

measured beam density with the values obtained from the numerical attenuation

calculation. In each case  we first ill ustrate the typical radial and time dependence of

the measured and calculated neutral beam density. We then show the pulse to pulse

variation between the results obtained from both methods.

 
 5.5.1 Single beam bank pulses

 In figure 5.16 we ill ustrate at three different time periods the behaviour of the radial

dependence of the measured and calculated neutral beam density for a typical pulse.
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 Figure 5.16   Radial dependence of the measured and calculated neutral beam density for the single

beam bank pulse 40419. Three time slices have been selected to ill ustrate the results. A characteristic

feature which can be observed in the majority of pulses is the fall off of the measured beam density as

we move towards the edge ( ~ 3.7 m ).
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 There is generally good agreement between the measured and calculated values

although the figure shows a sudden decrease of the measured beam density near the

edge of the plasma ( ~ 3.7 m ). This unexplained fall off was first observed by

Mandl[20] and appears in the radial dependency of the measured beam density for all

single beam bank pulses.

 The time dependency of the measured and calculated neutral beam density for

a typical pulse is shown in figure 5.17.
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 Figure 5.17   Time dependency of the measured and calculated neutral beam density for the single

beam bank pulse 40419. Three radial positions have been selected to illustrate the results.

 

 There is remarkably good agreement between the measured and calculated values at

all times for the three different radial positions.

We also ill ustrate the pulse to pulse variation of the results. The criteria for the

selection of pulses was simply that the pulses must have continuous neutral beam

injection, see figure 5.18.
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 Figure 5.18   Variation of the measured and calculated beam density for a range of single beam bank

pulses. Each data point represents a time averaged value for a fixed radial position. A measure of the

deviation between the measured and calculated beam density is obtained by comparing the solid

straight line with that of the dashed line which represents perfect agreement.

 

 Each data point represents a time averaged value for a fixed radial position. The

assigned error bar is simply the standard deviation associated with the time averaged

value. A measure of the deviation between the measured and calculated beam density

is obtained by comparing the solid straight line with that of the dashed line which

represents perfect agreement. As shown in figure 5.18, an average difference of ~27

% can be observed between the measured and the calculated neutral beam density.

 

5.5.2 Double beam bank pulses

The radial dependence of the measure and calculated neutral beam density for a

typical double beam bank pulse is shown in figure 5.19. Three time periods of the

pulse have been selected to illustrate the results.
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Figure 5.19   Radial dependence of the measured and calculated neutral beam density for three

different time periods of  the double beam bank pulse 40321.

The measured and calculated values show good agreement. However  due to

experimental diff iculties we have no data near the edge of the plasma (~ 3.7 m ),

therefore we cannot confirm the fall off of the measured beam density as observed

from the analysis of single beam bank spectra.

In figure 5.20 we show the time dependence of the measured and calculated

values for three radial positions. We now consider the  pulse to pulse variation

between the measured and calculated neutral beam density. The selection criteria were

the same as for single beam bank pulses. The results can be seen in figure 5.21, where

an average difference of ~20 % can be observed between the measured and the

calculated neutral beam density. It should be noted that each point represents a time

averaged value for a fixed radial position.
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Figure 5.20   Time dependence of the measured and calculated neutral beam density at three radial

positions for the double beam bank pulse 40321. Good agreement between the measured and calculated

values as a function of time can clearly be observed.
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Figure 5.21   The variation between the measured and calculated neutral  beam density for a range of

double beam bank pulses. The solid straight line represents a line of best fit through the data points. A

measure of the deviation between the measured and calculated beam density is obtained by comparing

the solid straight line with that of the dashed line representing perfect agreement.
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5.6 Conclusion

Refinements in the spectral fitting, consistency in the charge exchange analysis and

the use of improved data which enters into the modelli ng to evaluate the effective

coeff icients, have led to the reliable deduction of the neutral beam density from the

single and double beam bank spectra.

For single beam bank spectra we are able to recover a neutral beam density to

within 27 % of the values obtained from the attenuation calculation. In the case of

double beam bank pulses, we can recover the neutral beam density to within 20% of

the numerical attenuation calculation.

In both single and double beam bank scenarios the time dependence between

the measure and calculated beam density is remarkably good and this  adds some

credence to the atomic modelli ng. It should be noted however  that from the results it

appears that we can  measure the beam density from double beam bank pulses with a

greater accuracy than that for single beam bank pulses. This is some what surprising

since the beam emission spectrum from a single beam bank pulse is much easier to

analyse.

.
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6.0  Predictive studies of helium beam attenuation and emission

6.1 Introduction

During tokamak experiments it is convenient to keep the neutron flux from the

plasma to a minimum so that access to the vessel may be unrestricted. To minimise

the beam driven neutron production rate, fast helium beam atoms can be injected into

the plasma instead of neutral deuterium atoms. The neutral helium beams still heat

the fusion plasma but without the production of unwanted neutrons[84]. There are

also potential diagnostic benefits of injecting neutral helium beam atoms into the

plasma rather than deuterium atoms. Due to the eff iciency of the resonant process of

double charge exchange, helium beam atoms in their ground state can act as donors

to the fully stripped alpha particles contained in the plasma. The neutralised alpha

particles can be measured and the associated slowing down time can be obtained[22].

Also due to the presence of metastable levels in the beam, preferential charge

exchange between the ground state and the He(2 3S) metastable may be possible. As

suggested by Hoekstra[85], in  circumstances  where the He(2 3S) metastable

population is significant it may be the case that it will be primary donor for the CVI(

n=8 -7 ) charge exchange line, with a small contribution from the He(1 1S) ground

state. Where as the He(1 1S) ground state would be the primary donor for the

HeII(n=4-3) charge exchange line, with a small contribution from the He(2 3S)

metastable. Another important diagnostic benefit is with the application of beam

emission spectroscopy. Due to the degenerate nature of deuterium atoms, the

motional Stark effect resulted in a complicated array of Stark components which was

diff icult to analyse (see chapter 5.0). In the case of neutral helium, the influence of

the motional Stark effect on the  observed emission lines is not as significant and so

the spectrum is simpler to analyse.

In this chapter we show the behaviour and parameter dependencies of the

helium beam colli sional-radiative ionisation and cross coupling coeff icients required

to model the beam attenuation and the non-equili brium metastable populations. In

particularly, we highlight the difference in the rate at which electrons are ionised

from the ground state and the two metastables. We also explore the parameter

dependencies of the quasi-static excited population structure required to predict the
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emission from the beam atoms themselves and hence extract the local plasma

conditions from measurements. We examine in detail the influence of the non-

equili brium metastables on the quasi-static excited populations of the levels

contained in the n=4 shell . The motivation for this is that if we can identify which

metastable is most effective at populating each of the levels in the n=4 shell , we can

utili se the spectral emission originating from the n=4 shell of the beam atoms to

gauge the metastable content of the beam.

Focusing our attention on the metastabilit y associated with the He(2 1S) and

He(2 3S) levels, we  investigate the implications of assuming that the  metastables

have relaxed and reached equili brium relative to the ground state. To achieve this we

calculate  the metastable populations, for JET plasma conditions, using a spatial

dependent treatment and we compare the results with that obtained from the quasi-

static approximation.

Finally, we consider the attenuation of the neutral helium beam.  We

investigate the attenuation of ground state and metastable populations and study the

influence of changing the initial metastable fractions of the beam. We also briefly

consider the influence of sudden changes in the electron temperature and density. Our

main motivation here is to describe quantitatively what happens to the metastable

populations as the beam progresses through the plasma.

6.2 Review of the collisional-radiative coupling coefficients

It was discussed at length in chapter 2.0 the origin and application of the colli sional-

radiative cross coupling coeff icients. It is worth briefly reviewing the main features at

this point. To calculate the beam attenuation and the non-equili brium level

populations we construct a set of coupled equations using the colli sional-radiative

cross coupling coeff icients. As mentioned earlier the coupling coeff icients take into

consideration the influence of stepwise atomic processes. For example the cross

coupling coeff icient which describes the rate at which the He(2 3S) metastable is

populated by the He(1 1S) ground state will i nclude the influence of all possible

reaction pathways rather than just the rate for direct excitation. The coupled

equations are of the form,
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where vb and ne are respectively the beam velocity and the electron density. The

quantity dx is along the beam path and N
n 

2S+1
L represents the population of the non-

equili brium level specified by the quantum numbers n, L and S. The colli sional-

radiative cross coupling coeff icients are represented by the symbol S
n
2S+1

L → n
2S+1

L
, where

the subscripts specify the initial and final non-equili brium level. The cross coupling

coeff icients for which the subscript only specifies the initial state e.g. S
n
2S+1

L
, refer to

what can be described as  the total loss coeff icient from the level n2S+1L. The total

loss coeff icient includes the colli sional-radiative ionisation rate from the level n2S+1L

as well as the contribution to populating the remaining levels. As discussed in

chapter 2.0, the colli sional-radiative ionisation coeff icients represent the rate at

which the non-equili brium levels of the beam atoms are ionised and are obtained

from the cross coupling coefficients using the following expression,

S S S S
m

ρ ρρ ρσ ρσ
σ ρσ

ρ

= − −
= +=

−

∑∑
11

1

6.2

where Sρ and Sρσ are respectively the effective ionisation and cross coupling

coeff icients, and the subscripts ρ and σ represent the initial and final states. In figure

6.1 we schematically show the physical significance of the colli sional-radiative

ionisation and cross coupling coefficients.
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Figure 6.1   Schematic ill ustration of the energy levels structure of neutral helium. Highlighted with

the dashed lines are the colli sional-radiative cross coupling coeff icients. Also shown in the figure with

the solid lines are the effective ionisation coeff icients associated with each metastable level. Note that

the coefficients which connect two metastables include the influence of all indirect paths.

6.3 Collisional-radiative cross coupling coefficients

The cross coupling coeff icients describe the rate at which the metastable levels,

including the ground state, are populated and depopulated within a colli sional-

radiative frame work. They include the influence of stepwise atomic processes and

can be used to define an effective ionisation coeff icient associated with the ground

state and each metastable. In figure 6.2 we show the behaviour of the cross coupling

and effective ionisation coeff icients as a function of beam energy for a pure D+

plasma.

The parameter dependencies which are of interest are the electron density,

neutral beam energy and the electron temperature. We also wish to separate the

contributions to the coupling coeff icients due to electron and ion colli sions and

finally, explore the dependence on the nuclear charge of the impurity ions contained

in  the plasma. We have categorised the coupling coeff icients into two groups of

similar parameter dependency. The  first group are associated with spin changing

transitions, while the second group contains the remaining coeff icients and is referred
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to as the non-spin changing group. It should be noted that in the present work all of

the coeff icients are calculated in terms of the electron density with the condition of

charge neutrality imposed.
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Figure 6.2  Colli sional-radiative cross coupling and effective ionisation coeff icients for a pure D+

plasma. Working down from the top we first consider the coeff icients associated with the He(1 1S)

ground state and then the He(2 1S) and He(2 3S) metastables. Also shown are the effective ionisation

coefficients. The electron density was 1.0 × 1013 cm-3 and the electron temperature was 100 eV.
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6.3.1 Non spin changing  transitions

The cross coupling coeff icients which have been categorised into the non-spin

changing group are schematically shown in figure 6.3.

Figure 6.3  Schematic ill ustration of the five effective coupling coeff icients which have been placed in

the non-spin changing category.

There are five coupling coeff icients in the non-spin changing group. The coeff icients

which connect the He(1 1S) and the He(2 1S) levels are the true cross coupling

coeff icients while the remaining three coeff icients describe the total rate at which

electrons are lost from each level. The latter contain the effective ionisation

coeff icient, as well as the coupling coeff icients which connect to the other two

remaining levels. We use the name ‘cross coupling’ coeff icient to refer to all these

types of effective coefficients

We shall first consider the density dependence of a non spin changing

coupling coeff icient for a pure D+ plasma. In figure 6.4 we ill ustrate the behaviour of

the coupling coeff icient, which describes the total loss rate associated with the He(1
1S) ground state, as a function of beam energy for three different densities. The

electron densities which have been selected to represent the coronal, colli sional-

radiative and high density regimes are 106, 1013 and 1015 cm-3 respectively.
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Figure 6.4   Cross coupling coeff icient describing the total loss rate from the He(1 1S) ground state for

a pure D+ plasma . The coeff icient has been plotted for three different densities as a function of neutral

beam energy. Also shown in the figure is the contribution to the coeff icient due to electrons colli sions

only. The electron temperature was 100 eV.

In the coronal regime only the direct processes contribute to the coeff icient. The

component of the cross coupling coeff icient which represents the effective ionisation

coeff icient is just the rate for direct ionisation due to electrons and ions, while the

remaining component of  the cross coupling coeff icient, which connects the He(1 1S)

ground state to the other two metastables levels, is simply the sum of the

corresponding direct excitation rates. When the electron density is increased to

around 1 x 1013 cm-3 , we are in the colli sional-radiative regime where the role of

stepwise atomic processes is important. This results in an overall i ncrease  in the

effective cross coupling coeff icient. The effective ionisation component of the

coupling coeff icient now includes a contribution due to ion and electron impact

ionisation from excited levels and the remaining component of the coupling

coeff icient includes the influence of stepwise atomic processes. At an electron

density of 1.0 x 1015 cm-3, we are in the high density regime, see figure 6.4. The

coupling coeff icient has reached a maximum value. The component of the coupling

coeff icient which represents the effective ionisation rate includes the influence of ion
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and electron impact ionisation from the ground and the excited states. Even

excitation contributes to ionisation. The contribution of the cross coupling coeff icient

which connects the ground state with the two metastable levels now includes the full

influence of stepwise processes as well as direct excitation.

It is of interest to contrast the behaviour of the cross coupling coeff icient

calculated with and without the inclusion of ions. As can be observed in figure 6.4,

the contribution to the effective coeff icient due to electrons, regardless of the electron

density, is independent of the beam energy. This is due to the fact that the electrons

are moving in the plasma with such a large velocity that the speed of the beam is

insignificant. If  however  we introduce ions into the plasma the effective coeff icient

changes. In the low energy regime the contribution to the cross coupling coeff icient is

primarily due to electrons. The ions colli sions are only driven by their thermal ion

temperature and the net contribution is small . As the neutral beam energy is increased

the influence of the ion colli sion becomes significant and results in an increase in the

effective coupling coeff icient, see figure 6.4. The increase in the coupling coeff icient

directly reflects the energy dependence of the cross sections which describe the

behaviour of ion impact excitation and ionisation The latter being of greater

importance above 10 keV amu-1.

The temperature dependence of the coupling coeff icient is the next issue we

want to address. In figure 6.5 we show for a low density D+ plasma ( ~ 1.0 × 106 cm-3

), the coupling coeff icient which described the total loss rate associated with the He(1
1S) ground state as a function of the beam energy for a selected range of

temperatures.

It can be observed that  an increase in the electron temperature results in an

increase in the coupling coeff icient. This is due to the temperature dependence of the

electron colli sions which contribute to the cross coupling coeff icient. At a

temperature of 10 eV the component of the coupling coeff icient which represents the

effective ionisation coeff icient is simply the corresponding electron impact ionisation

rate. As we increase the temperature, the behaviour of the effective ionisation

component reflects the behaviour of electron impact ionisation rate. It is of interest to

note that as we increase the temperature from 10 to 100 eV there is a substantial
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increase in the coupling coeff icient. However as we increase the temperature from

100  to 1 keV the change in the coupling coeff icient is less. This is a clear ill ustration

of the temperature dependence of the electron colli sions, particularly the electron

impact ionisation rate which is also shown in figure 6.5. We also show in figure 6.5

the contribution to the coupling coeff icient due to electron colli sions alone. As before

we can observe that the electron contribution is independent of the beam energy and

is governed by the electron temperature.
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Figure 6.5   Temperature dependence of the coupling coeff icient describing the total loss rate

associated with the He(1 1S) ground state for a pure D+ plasma. The plot on the left ill ustrate the

coupling coeff icient as a function of neutral beam energy for a selected range of electron temperatures.

Also shown is the contribution to the coupling coeff icient due to electron colli sions. The electron

density was 1.0 x 106 cm-3 .The plot on the right ill ustrates the temperature dependence of the electron

impact ionisation rate coefficient associated with the He(1 1S) ground state.

Due to the unavoidable presence of impurities in tokamak plasmas we must also take

into consideration their influence on the cross coupling coeff icients. In figure 6.6 we

show the behaviour of the coupling coeff icient which describes the total loss rate

associated with He( 1 1S) ground state for pure impurity plasmas. The electron

density is fixed and the number density for each impurity species is such that charge
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neutrality is maintained. Therefore as the nuclear charge of the impurity species

increases the corresponding impurity number density decreases.
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Figure 6.6  Cross coupling coeff icient associated with the He(1 1S) ground state as a function of

neutral beam energy for a range of pure impurity plasmas. The electron density is fixed at 1.0 × 1013

cm-3 and the number density of impurity species is such that charge neutrality is maintained. The

electron temperature was 100 eV.

In the low energy regime the contribution to the coupling coeff icient is primarily

dominated by electron colli sions. It can be observed however that some of the

impurity ions are capable of effectively contributing to the coupling coeff icient at

such a low energy. Their influence in this case is  due to their thermal ion

temperature. As the beam energy is increased, the influence of ion impact excitation

becomes important at around 104 eV/amu and as the beam energy is increased further

ion impact ionisation dominates. The influence of the impurity ions as shown in

figure 6.6, increases with  nuclear charge, even though the number density of the

impurity species decreases.

As mentioned before, all of the coeff icients grouped into the non-spin

changing category exhibit a similar type of parameter dependency and we have

focused on the coupling coeff icient associated with the He(1 1S) ground state merely
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as an example. In figure 6.7 we show the behaviour of the coupling coeff icient which

describes the total loss rate associated with the He(2 3S)  metastable for a pure D+

plasma.

Figure 6.7  Behaviour of the cross coupling coeff icient describing the total loss rate associated with

the He(2 3S) metastable for a pure D+ plasma.  In the low energy regime the contribution to the

coeff icient is primarily driven by electron colli sions. As the beam energy is increased the role of ion

colli sions becomes significant and an increase in the coupling coeff icient can be observed. If we

increase the electron density the role of step wise atomic processes becomes important and results in

the coupling coefficient increasing to a maximum value which corresponds to the high density limit.

As can be observed, in the low energy region the contribution to the coupling

coeff icient is small , it is driven purely by electrons. As we increase the beam energy

the influence of the ion colli sions becomes significant and results in an increase in

the coupling coeff icient. An increase in the electron density encourages the atomic

processes associated with the excited states to contribute to the coupling coeff icient.

If we continue to increase the density the high density limit i s reached and the

coupling coefficient tends to a constant value.
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6.2.2 Spin changing  transitions

We schematically show in figure 6.8  the cross coupling coeff icients which are

contained in the spin changing group.

Figure 6.8   Schematic ill ustration of the four colli sional-radiative cross coupling coeff icients which

are contained in the spin changing group.

There are four cross coupling coeff icients in total. Each of the coeff icients represent

the rate at which the metastable levels, including the ground state, are populated and

depopulated through spin changing processes. It is important to mention that ion

colli sions are strictly spin conserving. Only electron colli sions are involved in spin

changing transitions. Therefore in the present context the  ions colli sions can only

populate the singlet spin systems of the beam atoms by promoting electrons from the

ground state. Electron colli sions however can contribute to populating both the

singlet and triplet spin systems through a variety of spin and non-spin changing

transitions.

We shall first consider the density dependence of the spin changing cross

coupling coeff icients for a pure D+ plasma. In figure 6.9 we show the behaviour of

the coupling coeff icient for the transition He(2 1S)→He(2 3S) as a function of beam
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energy for three different densities. Also shown are the cross coupling coeff icients

for a pure electron plasma.
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Figure 6.9   Colli sional-radiative cross coupling coeff icient for the He(2 1S)→He(2 3S) spin changing

transition for a pure D+ plasma. The coupling coeff icient has been plotted as a function of neutral

beam energy for three different electron densities. The electron temperature was 100 eV.

As can be observed, in the above figure we are presented with some interesting

results. Since electron colli sions drive the spin changing transitions it would have

been expected that the cross coupling coeff icient would have been independent of the

neutral beam energy. This is in fact the case when we look at the cross coupling

coeff icient as a function of beam energy in the low density regime at 1 x 106 cm-3.

However as we increase the electron density the role of atomic processes associated

with excited states comes into to play. At a density of around 1 x 1013 cm-3, as shown

in figure 6.9, in the low energy regime the cross coupling coeff icient is driven purely

by electron colli sions and is therefore independent of the beam energy. As we

increase the beam energy the influence of the ion colli sions becomes important. In

the above figure it can be seen that the ion colli sions contribute to reducing the cross

coupling coeff icient. This phenomena can be attributed to the fact that in the low

density regime the reaction path ways from the He(2 1S) metastable is dominated by
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spin changing electron colli sions, even at high beam energies. As we increase the

density the influence of the ion colli sions contribute to increasing the reaction path

ways associated with the He(2 1S) metastable level. As the beam energy increases it

becomes more favourable to excite or ionise the contents of the He(2 1S) level rather

than contributing to populating the He(2 3S) metastable via a spin changing

transitions, see figure 6.10. The energy dependence of the spin changing cross

coupling coefficients should be consider as a secondary effect .

Figure 6.10   Schematic ill ustration of the increasing reaction pathways associated with the He( 2 1S )

metastable level. In the low density region the contents of the He(2 1S) metastable acts as a source to

populate the He(2 3S) metastable. As the electron density is increased the role of ion colli sions result

in the content of the He( 2 1S) metastable being preferentially excited or ionised rather than

contributing to populating the He(2 3S) metastable, particularly as high energies.

We now consider the temperature dependence of the spin changing cross

coupling coeff icient. In figure 6.11 we show the behaviour of the cross coupling

coefficient for the transition  He(2 3S)→ He(2 1S).
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Figure 6.11   Temperature dependence of the cross coupling coeff icient for the transition He(2 3S)→

He(2 1S). The behaviour of the cross coupling coeff icient directly reflects the temperature dependence

of the fundamental data.

Spin changing transition are driven purely by the electron colli sions and since the

influence of the electron colli sion is governed by the temperature we would expect a

strong temperature dependence of the coupling coeff icient. This indeed can be

observed in the above figure. The behaviour of the coupling coeff icient directly

reflects the temperature dependence of the electron colli sions which are involved in

the spin changing transition. It is of interest to note how the coupling coeff icient

decreases as the temperature increases.

We now consider the dependency of the cross

coupling coeff icient on the nuclear charge of typical impurity species. Once again we

emphasise that the electron density is fixed and the number density of impurity ions

is such that charge neutrality is maintained. In figure 6.12 we show the behaviour of

the coupling coeff icient corresponding to the transition He(2 1S)→He(2 3S)  for a

selected range of pure impurity plasmas.
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Figure 6.12   Cross coupling coeff icient for the transition He(2 1S)→He(2 3S) for a selected range of

pure impurity plasmas. Also shown is the contribution to the coeff icient due to electrons only. The

electron density and temperature were respectively 1.0 × 1013 cm-3 and 100 eV. The number density of

impurity ions is such that charge neutrality is maintained.

The greater the nuclear charge of the impurity species the more effective it is at

encouraging colli sional redistribution amongst the excited states and opening up

additional reaction pathways associated with the He(2 1S) metastable. Also shown in

the figure is the coupling coeff icient due to electrons only. It is of interest to note that

even at very low beam energies, the contribution to the coupling coeff icient due to

the some of the impurity ions is of significance. The driving mechanism for the

impurity ions in this regime is their thermal ion temperatures.

The parameter dependencies of the remaining cross coupling coeff icients

contained in the spin changing group show a similar parameter dependency. As an

example we show in figure 6.13 the behaviour of the coupling coeff icient for the

transition He(2 3S)→He(2 1S) for a pure D+ plasma.
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Figure 6.13   Behaviour of the He(2 3S)→He(2 1S) cross coupling coeff icient for a pure D+ plasma. In

the low density regime the coeff icient is independent of the neutral beam energy since it driven purely

by electron colli sions. As we increase the density the influence of the ion colli sions open up additional

reaction pathways associated with the He(2 3S) and a decrease in the coefficient can be observed.

As can be observed, in the low density regime the cross coupling coeff icient is

independent of the neutral beam energy. As the electron density is increased the role

of the ion colli sions opens up additional reaction pathways associated with the He(2
3S) metastable. It is instructive to compare the above figure with the surface plot

shown in figure 6.7. In the latter figure, which shows the behaviour of the coupling

coeff icient describing the loss rate from the He(2 3S) metastable, we can see that as

the electron density and neutral beam energy is increased the influence of the ion

colli sions result in the electrons being preferentially ionised. This is consistent with

the above figure, which shows that as the electron density and beam energy is

increased the reaction rate for the transition He(2 3S)→He(2 1S) substantially

decreases
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6.3.3 Collisional-radiative ionisation coefficients

It of interest to show the behaviour of the effective ionisation coeff icients associated

with the ground state and each metastable. However it is important to note that even

though we can assign an effective ionisation coeff icient to each non-equili brium level

and hence an effective stopping coeff icient in principle, to implement a numerical

attenuation calculation involves solving a set of coupled equations which describe

how the metastable and ground state populations evolve as the beam traverses the

plasma. Due to the presence of metastable levels we can not describe the attenuation

of the beam with a single coeff icient. The helium beam attenuation calculation,

which is the subject of section 6.5,  is analogous to modelli ng the attenuation of three

beams which are not independent of each other. In figure 6.14 we show the general

behaviour of the effective ionisation coeff icients associated with each level for a pure

D+ plasma. The effective ionisation rates associated with the He(2 1S) and He(2 3S)

metastable levels are order of magnitudes greater than the ionisation coeff icient

associated with the ground state. A similar behaviour is shown by both ionisation

coeff icients. In the low density and energy regime each of the coeff icients are purely

driven by electron colli sions. As the neutral beam energy is increased the

contribution due to ion colli sions results in a sudden increase in the effective

coeff icients. As we increase the electron density the contribution due to stepwise

processes results in a further increase until the high density limit is reached.
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Figure 6.14   Colli sional-radiative effective ionisation coeff icients for a pure D+ plasma. Starting from

the top we show the effective coeff icients associated with the ground state and then the He(2 1S) and

He(2 3S) metastables. As can be observed the magnitude of the coeff icients associated with the two

metastable levels are substantially greater than the ionisation coeff icient associated with the ground

state. The electron temperature was fixed at 100 eV.
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6.4 Quasi-static excited state population structure

In this section we  ill ustrate the dependence of the excited population structure on the

neutral beam energy, electron density and the electron temperature. We also show the

influence of the metastable levels on the excited population structure, particularly the

n=4 shell . Since the excited states have reached equili brium relative to the ground

state and the two metastables, it is of interest to be able to identify the extent to

which each metastable is  responsible for driving the population of  each of the

excited levels. For the higher levels above the He(3 3D) this certainly is not obvious.

Finally, we ill ustrate the dependency of the excited population structure on the

nuclear charge of the impurity ions. We have restricted our study of the excited levels

up to the n=4 shell , since this encompasses the important levels for visible

spectroscopy. The quasi-static population of these levels have been calculated in a

resolved nl2S+1L picture up to the n=5 shell  which then continues into a bundled-nS

picture and terminates at n = 110.

6.4.1 Neutral beam energy dependence

The eff iciency of the ion colli sions in colli sional redistribution and ionisation of the

excited population structure is beam energy dependent. Also since ion colli sions are

spin conserving we would expect their influence to be confined within a spin system.

In figure 6.15 we show the excited population structure  of the singlet and triplet spin

systems relative to the He(1 1S) ground state as a function of neutral beam energy for

a D+ plasma.

Considering  the singlet spin system, in the low energy regime the excited

states are predominantly populated by electron colli sions and are independent of the

neutral beam energy. There is an insignificant contribution by ion colli sions, due to

their thermal temperature. As the beam energy is increased the influence of the ion

colli sions becomes significant. This results in  a decrease in the excited state

populations which can be attributed to ion impact ionisation depopulating each of the

levels. If we continue to increase the beam energy the depleted populations begin to

recover and increase as a function of beam energy. This is due to the fact that  it

becomes more energetically favourable to populate most of the levels by ion impact



172

excitation than to depopulate each of them by ion impact ionisation. The extent to

which each level is populated depends on their associated ionisation energy and the

excitation energy required to populate the level from the nearest neighbour. For

example, if we consider the He(3 1P) level, the  ionisation energy  is ~1.499 eV while

the excitation energy to populate this level from the He(3 1S) is only ~0.166 eV. We

would therefore expect the population of He(3 1P) level to increase as ion impact

excitation strongly competes with ion impact ionisation. However if we consider a

higher lying level, for example  He(4 1S), in this case ion impact ionisation will have

a larger influence than the contribution due ion impact excitation from neighbouring

levels and  we would expect the increase in the He(4 1S) population to be of less

significance as shown in figure 6.15.
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Figure 6.15   Quasi-static excited state populations of the singlet and triplet spin system relative to the

He(1 1S) ground state for a D+ plasma. The plot to the left shows the population structure of the singlet

spin system while the figure to the right ill ustrate population structure of   the triplet spin system. The

electron density was 1.0 × 1013 cm-3 and the temperature was 100 eV.
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If we now consider the population structure of the triplet spin system driven

by the He(1 1S) ground state, as mentioned before, only electron colli sions are

responsible for populating the triplet spin system. This can occur through direct

excitation from the ground state or via spin changing transitions from the excited

states of the singlet to the triplet spin system. As shown in figure 6.15, in the low

energy regime the population structure is independent of the neutral beam energy.

However as we increase the beam energy the excited triplet populations can be

observed to decrease. This is due to the fact that as we increase the beam energy, ion

impact ionisation which promotes the singlet populations to the continuum becomes

important. The singlet populations decrease and the contribution from the excited

state spin changing colli sions to the triplet spin system is reduced. If we continue to

increase the beam energy the population of the triplet levels can be observed to

slightly recover. This is due to the rise in the populations of the singlet spin system

and hence an increase in the contribution to the population of the triplets due to

excited state spin changing transitions.

A similar type of behaviour can be observed for the singlet and triplet

populations relative to the He(2 1S) and He(2 3S) metastable levels, see  figure 6.16.

It should be noted though, that in both these cases  it is more energetically favourable

to populate the excited levels of the singlet spin system via ion impact excitation,

than to depopulate them by ion impact ionisation. Therefore the extent to which the

excited states of the singlet spin system are depopulated is minimal.

The singlet populations relative to the He(2 1S) and He(2 3S) metastables can

be observed to decrease slightly as  a we increase the beam energy. The populations

however soon rapidly recover due to the contribution from ion impact excitation, see

figure 6.16.
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Figure 6.16   Quasi-static excited population structure of the singlet and triplet spin systems relative to

the He(2 1S) and He(2 3S) metastable levels for a D+ plasma. The two plots at the top show the

behaviour of the singlet and triplet excited population structure relative to the He(2 1S) metastable.

The two plots at the bottom show the behaviour of the excited population structure relative to the He(2
3S) metastable. The electron density was 1.0 × 1013 cm-3 and the temperature was 100 eV.

6.4.2 Density dependence

In figure 6.17 we show the behaviour of the singlet and triplet population structure

relative to the He(1 1S) ground state as a function of electron density for a D+ plasma.
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Figure 6.17   Quasi static excited population structure of the singlet and triplet spin system relative to

the He(1 1S) ground state for a D+ plasma. The beam energy and temperature are respectively 5.0 keV

amu-1 and 100 eV. The populations are calculated in terms of the electron density but it is in fact the

ion colli sions which dominate the colli sional redistribution. The number density of the ions is such that

charge neutrality is maintained.

In the low density regime the excited levels of the singlet spin system associated with

the beam atoms are populated by electron and ion colli sions. The triplet spin system

is populated by electron colli sions. Regardless of the spin system the excited levels

are depopulated by radiative decay. The excited populations relative to the He(1 1S)

ground state are directly proportional to the electron density. At  1.0 × 1013 cm-3 in

figure 6.17 we are in the colli sional-radiative regime. As we continue to increase the

electron density the excited populations reach the high density limit . A similar

parameter dependency of the singlet and triplet population structure, relative to the

He(2 1S) and  He(2 3S) metastable levels,  is shown in figure 6.18.
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Figure 6.18   Quasi-static equili brium populations of the singlet and triplet spin systems relative to the

He(2 1S) and He(2 3S) metastables for a D+ plasma. The beam energy and temperature are respectively

5.0 keV amu-1 and 100 eV.

6.4.3 Temperature  dependence

In figure 6.19 we ill ustrate the temperature dependence of the population structure of

the singlet and triplet spin system relative to the He(1 1S) ground state for a D+

plasma.
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Figure 6.19    Temperature dependence of the quasi-static excited population of the singlet and triplet

spin system relative to the He(1 1S) ground state for a D+ plasma. The electron density was 1.0 × 1013

cm-3 and the neutral beam energy was 5.0 keV amu-1.

As can be observed, the population structure of the  triplet spin system is strongly

dependent on the electron temperature. This is because the excited states of  the

triplet spin system can only be populated by electrons colli sions via direct spin

changing excitation from the ground or via spin changing transitions from the excited

states of the singlet spin system. The singlet excited states can be  populated by both

electrons and ion colli sions and the dependency of the electron temperature is some

what less. These observations reflect the character of the electron impact excitation

rates involved[86]. In terms of the upsilon parameters, these ( asymptotic )

behaviours are,

Dipole allowed   : γij �  constant . ln(T
e
)     6.10

Non Dipole : γij �  constant     6.11

Spin changing : γij �  constant. / T
e
2       

6.12

For example in the case of the triplet spin system, see figure 6.19, as we increase the

electron temperature the  rise and decay of the excited state populations directly
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reflect the behaviour of the underlying spin changing electron excitation rates. In

figure 6.20 we now show the temperature dependence of the singlet and triplet

excited population structure relative to the He(2 1S) and He(2 3S) metastables, where

a similar parameter dependence can be observed.
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Figure 6.20   Temperature dependence of the quasi-static equili brium populations of the singlet and

triplet spin systems relative to the He(2 1S) and He(2 3S) metastable levels for a D+ plasma. The

electron density was 1.0 × 1013 cm-3 and the neutral beam energy was 5.0 keV amu-1.
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6.4.4 Comparison of the role of the metastable levels

In this sub-section, we summarise the relative importance of the metastables in

driving the population structure. We confine our study to the levels contained within

the n=4 shell . In figure 6.21 we show the energy dependence of the quasi-static

populations of each  level contained within the n=4 shell , relative to the ground state

and the two metastable levels for a D+ plasma. By this we mean the contribution

functions ( FI, FII and FIII ) given by equation 3.52. For the singlet spin system it can

be seen that the He(2 1S) metastable is as expected most effective in populating the

excited levels within the n=4 shell . It can also be observed that there is a competition

between the relative effectiveness of  the He(2 3S) metastable and the He(1 1S)

ground state. If we consider the population of the He(4 1S) level, we observed that in

the low energy regime the contributions from the ground state and the He(2 3S)

metastable are comparable. However as the beam energy increases the contribution

from the He(1 1S) exceeds that from the He(2 3S) metastable. This is simply due to

the fact that the influence of the ion colli sions on the singlet spin system is to reduce

the He(2 3S) population’s relative importance. If we now study the He(4 1P) level, in

the low energy regime the contribution from the He(2 3S) metastable is now greater

than that from the He(1 1S) ground state, but as the beam energy increases the

effectiveness of the He(2 3S) metastable decreases and the contribution from the He(1
1S) dominates. The difference though between the ground state and the triplet

metastable, in the high energy regime, is considerably less than that for the He(4 1S)

level. In the case of the He(4 1D) and He(4 1F) levels, a similar behaviour in the low

energy regime can be observed where the contribution from the He(2 3S) metastable

exceeds that from the He(1 1S) ground state. However in the high energy regime the

contribution from the He(2 3S) metastable is now greater than that from the ground

state. This is quite different  from what was observed for the He(4 1S) and He(4 1P)

levels.

Focusing now on the population structure of the triplet spin system we see

that the He(2 3S) metastable is the dominant non-equili brium level for populating the

excited states contained within the n=4 shell . The contribution from the He(2 1S)
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metastable is considerably less but greater than the contribution from the He(1 1S)

ground state.
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Figure 6.21   Quasi static equili brium populations of each of the levels contained within the n=4 shell ,

relative to the ground state and each metastsble level for a D+ plasma. The plots contained in the

column to the left concerns the singlet spin system while column to the right involves the triplet spin

system. The electron density was 1.0 × 1013 cm-3 and the electron temperature was 100 eV.
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In figure 6.22 we now show the density dependence of the quasi-static

populations of the levels contained within the n=4 shell , relative to the ground state

and the two metastable levels for a pure D+ plasma.
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Figure 6.22   Density dependence of the equili brium populations of the levels contained within the

n=4 shell , relative to the ground state and each metastable  for a pure D+ plasma. The electron density

was 1.0 x 1013 cm-3 and the beam energy was 5.0 keV amu-1.

Starting first with the excited populations of the singlet spin system. If we consider

the He(4 1S) level, it can be seen that the contribution from the He(2 1S) metastable
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dominates that from the ground state, which is considerably greater than the

contribution from the He(2 3S) metastable. The He(4 1P) level exhibits a similar

behaviour but we can see the onset of a competition between the contribution from

the ground state and the triplet metastable, particular at high densities. This

competition is more evident in the case of the He(4 1D) level where the contribution

due to the He(2 3S) metastable temporarily exceeds that from the ground state. In the

case of the He(4 1F) level we can observe that in the low density region the

contribution due to the He(2 3S) level is even greater than the contribution from the

He(2 1S) metastable. However as the electron density is increased the situation

changes.

Similar observation can be made with the populations of the n=4 shell of the

triplet spin system. For the He(4 3S) level the dominant contribution is due to He(2
3S) metastable and the contribution from the He(2 1S) level is considerably less but

not as small as that from the He(1 1S) ground state. However as we study the He(4
1P) level the onset of the competition between the He(1 1S) and the He(2 1S) can be

observed. This competition continues and for the He(4 1F), in the low density regime,

the contribution from the He(2 1S) metastable even exceeds that from  the He(2 3S)

metastable. As the electron density is increased the He(2 3S) metastable begins to

dominate once again.

We now consider the temperature dependence of the quasi-static population

of the levels contained within the n=4 shell , relative to the ground and the two

metastable levels for a pure D+ plasma, see figure 6.23. It can be seen that for the

singlet spin system, the dominant non-equili brium level which is most effective at

populating the excited levels is the He(2 1S) metastable. It can also be observed that

there is  a competition between the contributions from the He(1 1S) ground state and

the He(2 3S) metastable level. In the case of all of the excited levels, at relatively low

temperatures the contribution due to the He(2 3S) metastable exceeds that from the

He(1 1S) ground state. However as the temperature increases the opposite occurs and

the contribution from the  He(1 1S) ground state is now greater than that from the

He(2 3S) metastable. This type of behaviour is simply due to the temperature

dependence of the electron collisions as mentioned earlier.
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Figure 6.23   Temperature dependence of the quasi static population of the levels contained within the

n=4 shell , relative to the ground state and each metastsble level for a pure D+ plasma. The plots

contained in the column on the left concern the singlet spin system while the column on the right

pertains to the triplet spin system. The electron density was 1.0 x1013 cm-3 and the neutral beam energy

was 5.0 keV amu-1.
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6.4.5 The influence of impurities

Due to the presence of impurities in tokamak plasmas we examine their differential

influence on the excited population structure of the beam atoms. We show in figure

6.24 the excited population structure of the singlet spin system relative to the He(1
1S) ground state for a pure D+, He2+ and C6+ plasma.
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Figure 6.24   Quasi static equili brium population structure for the singlet spin system relative to the

He(1 1S) ground state. Working from left to right  we show the population structure for a pure D+, He2+

and then C6+ plasma. The beam energy was 5.0 keV amu-1 and the electron density was fixed at 1.0 ×

1013 cm-3. The number density of impurity ions is such that charge neutrality is maintained.

If we first confine ourselves to the population structure associated with the beam

atoms for a pure D+ plasma. As mentioned before, we can observe that in low energy

regime the population of each level is independent of the beam energy and the

contribution due to thermal ion colli sions is insignificant. If we now consider the

population structure of the beam atoms for a pure He2+ plasma. In the low energy

regime the small contribution from the ion colli sions, due to their thermal velocity, is

now larger. As the beam energy is increased the eff iciency of the He2+ ions at

depopulating the excited levels can clearly be observed. We emphasise at this point
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that the excited populations are calculated in terms of the electron density, even

though it is in fact the ions which are primarily responsible for the colli sional

redistribution and ionisation of the excited levels. For a fixed electron density the

number density of impurity ions is such that charge neutrality is achieved. Therefore

with reference to the results shown in figure 6.24, there are twice as many D+ ions

which contribute to modifying the excited population structure  than  He2+ ions.

Finally, we consider the population structure of the beam atoms for a pure C6+

plasma. The most salient feature which can be seen is the extent to which the excited

levels are depopulated due to the influence of ion impact ionisation.

We now consider the excited population structure of the triplet spin system

for  a pure D+, He2+ and C6+ plasma, see figure 6.25.
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Figure 6.25   Quasi static equili brium population structure for the triplet spin system relative to the

He(1 1S) ground state. Working from left to right  we show the population structure for a pure D+, He2+

and then C6+ plasma. The beam energy was 5.0 keV amu-1 and the electron density was fixed at 1.0 ×

1013 cm-3. The number density of impurity ions is such that charge neutrality is maintained.

In the low energy regime electrons are responsible for populating the excited levels,

therefore the excited populations are independent of the neutral beam energy and

there is no contribution due to thermal ion colli sions. The secondary influence of the
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beam energy on the population structure of the triplet spin system can clearly be

observed. As the nuclear charge of the plasma impurity ion increases their influence

on the triplet spin system is enhanced. In the present work we only considered pure

D+, He2+ and C6+ plasmas but similar observations can be seen when considering

other pure or mixed impurity plasmas.

6.5 Evolution of the metastable populations under JET conditions

If we neglect the metastable nature of the He(2 1S) and He(2 3S) levels, then the

quasi-equili brium model would provide the whole population structure including the

metastable populations, relative to the ground state. There would be no need to

consider the spatial history of each metastable and the attenuation of the beam as a

whole would be characterised by only one colli sional-radiative coeff icient. However

in working plasmas the metastables do not reach equili brium. In this section we

calculate the He(2 1S) and He(2 3S) metastable populations and contrast with the

non-equili brium metastable populations in an actual beam model. We explore the

attenuation of the neutral helium beam and the influence of altering the initial

metastable content on entry to the plasma. Finally, we investigate the influence of the

electron density and temperature profiles on the beam attenuation.

6.5.1 Method of calculation

We seek the solution of the coupled equations for the metastable and ground state

population evolution as the beam traverses the plasma. As discussed earlier we

construct the set of such equations using colli sional-radiative cross coupling

coefficients,
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We solve for both the metastable and ground state populations relative to the neutral

beam density on entry to the plasma. The initial neutral beam density is given by the

sum of the ground state and metastable populations. For the quasi-static equili brium

metastable populations the equations reduce to the form,

v
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The quasi-static equili brium population of the He(2 1S) and He(2 3S) metastable

levels are calculated relative to  the He(1 1S) ground state.

For this work we have written a FORTRAN program which implements the

fourth-order Runge-Kutta method to integrate the coupled equations. In addition to

solving the equations for the local metastable populations, the program also

calculates the corresponding quasi-static equili brium populations. This enables us to

compare the quasi-static populations with the results obtained from our spatially

dependent treatment. The program also calculates the attenuation of each metastable

including the ground state as a function of radial position. This is useful since it

allows one to make an assessment on whether the population of the metastables are

significant as the beam continues into the plasma. The main parameters which the

program requires as input include the beam energy, the fractional metastable and

ground state content of the beam on entry to the plasma, as well as suitable electron

density and temperature profiles. A schematic ill ustration of  the program is shown in

figure 6.26. The program solves the coupled equations while moving in small

increments along a spatial grid, the beginning and end of the grid is defined by the

electron density profile. The size of the increments, dx , was selected after running

the program several times to obtain a step size which was small enough to ensure

numerical convergence but without hugely increasing the computational time of the

calculation. In addition to evaluating the coupling coeff icients at fixed points along
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the grid, the fourth order Runge-Kutta method requires coupling coeff icients at

intermediate points between the fixed step sizes. The program employs several

ADAS library routines to implement the linear interpolation method, see chapter 4.0,

to assemble the required coefficients at any point along the working grid.

Eff. cross
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coefficients
adf21

Assem ble
and

Solve coupled
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Figure 6.26   Schematic ill ustration of the FORTRAN program employed to solve the coupled

equations which describe the evolution of the ground state and metastable populations. As input the

program requires the beam energy, the fractional metastable and ground state content on entry to the

plasma, as well as suitable electron density and temperature profiles.

In this study the electron density and temperature profiles, which are used

were based on profiles obtained from JET for the pulse number 42676. These can be

observed in figure 6.27. Due to the irregular nature of each profile we have fitted 7th

order polynomials to each of them using a commercial graph plotting package. This

enables us to use the polynomials to look up the electron density and temperature as a

function of radial position eff iciently. We have also assumed that the plasma for

which the model profiles correspond to is of pure deuterium.
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Figure 6.27   Composite figure ill ustrating the electron density and temperature profiles for the JET

pulse 42676. To the left is a schematic of the side elevation of the vessel and should be used as a

reference for the radial positions associated with both profiles shown on the right. We have fitted the

density and temperature profiles  with 7th order polynomials. The motivation for this was to eliminate

the irregular structure associated with each profile, also it provided a means of being able to look up

the density and temperature as a function of radial position efficiently.

6.5.2 Metastable population : Quasi-static Vs Spatial solution

In working plasmas the scaled lengths (see chapter 2.0) for the electron density and

temperature are very short which prevents the metastables reaching equili brium. In

this sub-section we compare the metastable populations from the quasi-static

equilibrium model with those of the spatially dependent treatment.

Figure 6.28 shows the population of the He(2 1S) level relative to the ground

state for  the case of  no metastable content on entry to the plasma.
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Figure 6.28   Comparison between spatially dependent and quasi-static equili brium solution for the

He(2 1S) population relative to the ground state. The plot on the left ill ustrates the behaviour of the

quasi-static and spatially dependent He(2 1S) population for a fixed beam energy of 30 keV amu-1.

While the plot on the right shows the percentage deviation of the spatial dependent results from that

obtained from the  quasi-static assumption for a range of beam energies. On entry to the plasma the

total metastable content was zero.

As can be observed there is a significant difference between the results obtained from

quasi-static and spatially dependent treatment. This difference is greatest near the

edge of the plasma where the scaled lengths for the electron density and temperature

are very small , see plot on the left in figure 6.28. If we now consider the results from

the core of the plasma around ~ 2.75 m, the difference between the quasi-static

picture and the spatial dependent treatment is considerably less. Similar observations

can be made from the plot on the right in figure 6.28, where we show the percentage

deviation of the spatial dependent results from that obtained from the quasi-static

solution for a range of beam energies. Regardless of the beam energy the maximum

difference between the quasi-static results and the spatial treatment occurs at the edge

of the plasma. In the core of the plasma the He(2 1S) population does appear to be

approaching equili brium, but does not quite make it within the time scale on which

the electron density and temperature change. We can also see from the plot on the left

in figure 6.28 the increase in the He(2 1S) metastable population. Initially the He(2
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1S) is zero, however as the beam enters into the plasma, electron and ion impact

excitation contributes to populating the He(2 1S) level.

We show the He(2 3S) population relative to the ground state. In figure 6.29

the plot to the left shows a comparison between the results obtained from the quasi-

static and spatially dependent solution, while the plot on the right shows the

percentage deviation of the spatially dependent treatment from that of the quasi-static

solution for a range of beam energies.
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Figure 6.29   Comparison between the quasi-static equili brium and spatially dependent treatment for

the He(2 3S) population relative to the ground state. The plot to the left ill ustrates the behaviour of

quasi-static and spatial dependent  He(2 3S) population for a fixed beam energy of 30 keV amu-1. The

plot to the right shows the percentage deviation of the spatially dependent results  from that obtained

from the quasi-static assumption. The total metastable content of the beam on entry to the plasma was

set to zero.

It can be observed from the spatially dependent solution, shown in the plot on the left

in figure 6.29, that as the beam enters the plasma the He(2 3S) metastable is rapidly

populated. This arises due to the fact that the  temperature for the first few

centimetres into the plasma  is optimum (10~200 eV) to promote the influence of

spin changing electron colli sions, which are the only processes which can populate
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the He(2 3S) metastable level from the ground state. However as the beam continues

into the plasma the contribution to the He(2 3S) level decreases as the electron

temperature increases. Above electron temperatures of around ~ 2 keV the

contribution due to electron colli sions is very small . This prevents the He(2 3S)

metastable population from continuing  to increase. As the beam approaches the

inner edge of the plasma the  spin changing electron colli sions become important

once again and the He(2 3S) metastable population increases.

In figure 6.30 we show the quasi-static and spatially dependent populations

for the He(2 1S) and He(2 3S) metastables, for a beam which initially contains 90 %

He(1 1S) and 10 % He(2 3S) on entry to the plasma. Practical experiments on neutral

helium beam generation indicate that different neutralisation strategies can yield

metastable populations of this order.
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Figure 6.30   Comparison between the quasi-static and spatially dependent populations for the He(2
1S) and He(2 3S) metastables. The plot to the left ill ustrates the behaviour of the quasi-static and

spatially dependent  He(2 1S) population. The plot to the right exhibits the behaviour of the quasi-

static and spatially dependent population of the He(2 3S) metastable. On entry to the plasma the

contents of the beam consisted of  10% He(2 3S) and 90 % He(1 1S).
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In the case of the He(2 1S) metastable, as the beam penetrates into the plasma the

He(2 1S) metastable  is suddenly populated and follows the same behaviour as the

quasi-static population. The He(2 3S) metastable population on the other hand is

strongly attenuated on entry and as the beam approaches the inner edge of the plasma

the He(2 3S) population can be seen to increase. Finally, in figure 6.31  we consider

the hypothetical situation where the contents of the beam on entry to the plasma

consists of  90 % He(1 1S) and 10 % He(2 1S), even though it would be diff icult to

prepare a such beam.
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Figure 6.31   Comparison between the quasi-static and spatially dependent populations of the He(2 1S)

and He(2 3S) metastables. The plot to the left ill ustrates the behaviour of quasi-static and spatially

dependent He(2 1S) population. The plot to the right exhibits the behaviour of the quasi-static and

spatially dependent  He(2 3S) population.  On entry to the plasma the beam content consists of 10 %

He(2 1S) and 90 % He(1 1S).

As can be observed the He( 2 1S) is strongly depopulated as the beam penetrates into

the plasma. The He(2 3S) population exhibits the usual temperature dependence

where the population rises at the edge, decrease at the core, and then rises again at the

inner edge of the plasma. It is clear that regardless of the initial metastable content in

the beam the differences between the metastable populations obtained using the

quasi-static approximation and the more accurate spatial dependent treatment is

substantial.



194

6.5.3 Attenuation of a neutral helium beam

In this sub-section we investigate the absolute attenuation of the ground state and

metastable levels of a neutral helium beam. We wish to assess if the absolute

population of the metastables survive or are regenerated suff iciently for them to act

as strong charge exchange donors. This would enable the experimental study of

preferential charge exchange donation from the ground state and the metastables

levels (c.f. C6+ and He2+ receivers [85] )

The results for zero metastable content on entry into the plasma can be seen in

figure 6.32 where we show the attenuation of the He(1 1S) ground state for a range of

beam energies. In the present work, the attenuation of each metastable, including the

ground state, is expressed in terms of the corresponding local value relative to the

total beam density on entry to the plasma. The total beam density on entry to the

plasma is the sum of the ground state and metastable populations.
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Figure 6.32   Attenuation of the He(1 1S) ground state for  a range of beam energies. The initial

metastable content of the beam was set to zero. The electron and temperature profiles used are shown

in figure 6.27.

As shown in figure 6.32, for a relatively slow beam it is strongly attenuated at the

edge of the plasma. As we increase the beam energy the attenuation of the ground
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state population becomes less and for a beam of 30 keV amu-1 a total shine through

of approximately 36 % is achieved. We show in figure 6.33 the behaviour of the

He(2 1S) and He(2 3S) populations as a function of radial position relative to the

initial beam density on entry to the plasma.
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Figure 6.33   Attenuation of the He(2 1S) and He(2 3S) metastable levels. The electron  density and

temperature  profiles used are shown in figure 6.27. It is interesting to note that the initial metastable

population was zero on entry to the plasma. Therefore it is clear that there is a sudden rise in the both

the He(2 1S) and He(2 3S) populations at the edge of the plasma.

If we confine ourselves with the behaviour of the He(2 1S) metastable which can be

seen in the plot on the left in  figure 6.33, as the beam enters into the plasma the He(2
1S) level is suddenly populated and then slowly decays as the beam penetrates

through the plasma. For a slow beam the He(2 1S) metastable is attenuated relatively

quickly. The behaviour of the He(2 3S) metastable is shown in the plot to the right in

figure 6.33. As with the He(2 1S) level we can also see a similar increase in the He(2
3S) level as the beam just enters into the plasma. As the beam continues into the

plasma the He(2 3S) population is attenuated very rapidly. At the inner edge of the
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plasma we can observe that the He(2 3S) population begins to increase again. This is

also shown in the insert contained in the plot shown in figure 6.33. The behaviour of

the He(2 3S) metastable directly reflects the strong temperature dependence of the

electron collisions, see section 6.4.1.

In figure 6.33 the populations of each metastable are well below 0.1 % of the

initial beam density on entry to the plasma. We question whether it is necessary to

take into consideration the influence of the metastables while modelli ng the

attenuation of a beam, for which the metastable content on entry to the plasma is

zero. We have tabulated in table 6.1, the percentage of the He(1 1S) population,

which is attenuated as a function of penetration depth for a range of beam energies.

Also shown in a separate table, table 6.2, is the percentage of the He(1 1S) population

which is attenuated when we now neglect the He(2 1S) and He(2 3S) metastables in

the attenuation calculation.

Penetration Neutral beam energy  ( keV amu-1)

Depth (m) 0.1 0.5 1.0 5.0 10.0 20.0 30.0

0.25 36.47 18.88 14.24 8.44 7.46 7.20 7.43
0.50 72.93 45.23 35.72 22.37 19.96 19.24 19.79
0.75 89.90 .65.15 53.88 35.81 32.27 31.16 31.94
1.00 96.24 77.93 67.01 47.02 42.78 41.42 42.36
1.25 98.63 86.12 76.53 56.51 51.80 50.28 51.31
1.50 99.52 91.49 83.61 64.51 59.76 58.16 59.24
1.75 99.78 94.08 87.44 69.52 64.81 63.21 64.31

Table 6.1   Helium beam attenuation for which the initial metastable content was set to zero. The

tables contain the percentage of the beam which is attenuated as function of penetration depth for a

range of beam energies.

Penetration Neutral beam energy  ( keV amu-1)

Depth (m) 0.1 0.5 1.0 5.0 10.0 20.0 30.0

0.25 36.46 18.86 14.21 8.40 7.43 7.11 7.31
0.50 72.93 45.23 35.71 22.35 19.94 19.19 19.72
0.75 89.90 65.16 53.87 35.79 32.26 31.17 31.97
1.00 96.24 77.94 67.01 47.01 42.78 41.47 42.44
1.25 98.70 86.46 76.94 56.84 52.22 50.77 51.86
1.50 99.52 91.51 83.61 64.51 59.77 58.27 59.40
1.75 99.78 94.09 87.45 69.53 64.82 63.30 64.43

Table 6.2   Helium beam attenuation for which the initial metastable content was set to zero. The

tables contain the percentage of the beam which is attenuated as function of penetration depth for a

range of beam energies. In this case the metastable nature of  He(2 1S) and He(2 3S) has been ignored

in the attenuation calculation.
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The influence of the metastable levels while modelli ng the beam attenuation is

negligible. Therefore if interest is only in determining the total beam density as a

function of penetration depth, for a beam in which  the initial metastable content on

entry to the plasma is zero, we can neglect the metastable levels. The attenuation of

the beam can be characterised using a single colli sional-radiative ionisation

coeff icient which describes the loss rate from the ground state. It should be

emphasised though that to exploit the beam fully as a diagnostic probe via charge

exchange spectroscopy, the  detailed knowledge of the metastable populations is still

required as the associated charge exchange cross sections are very large.

We now investigate the implications of modifying the metastable content of

the beam on entry to the plasma. Figure 6.34 shows the attenuation of the He(1 1S)

population for a beam for which the initial contents consists of 90 % He(1 1S) and 10

% He(2 3S).
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Figure 6.34    Attenuation of the He(1 1S) population. The initial beam content consists of 90 % He(1
1S) and 10% He(2 3S). The electron density  and temperature profiles used are shown in figure 6.27.

The  attenuation of the He(1 1S) population, as ill ustrated in figure 6.34, exhibits the

same features as shown for the attention of the He(1 1S) ground state for a beam for

which the initial metastable content was zero, see figure 6.32. In figure 6.35 we

show the attenuation of the He(2 1S) and He(2 3S) metastable levels for the same

conditions. The He(2 1S) population exhibits the same features which we highlighted
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earlier, namely a sudden increase in the metastable level marking the entry of the

beam and then the population decay. The He(2 3S) metastable enters the plasma with

a 10 % population, therefore we do not see the sudden rise in the population due to

contribution from electron colli sions. As the beam penetrates into the plasma we can

see the population being strongly attenuated and then near the inner edge of the

plasma, the He(2 3S) population begins to rise again, see  inset contained in the plot

on the right in figure 6.35. Due to the large ionisation coeff icient associated with the

triplet metastable the attenuation is substantial. For example, the He(2 3S) population

for a beam energy of 100 eV amu-1 is attenuated by ~ 55 % within approximately 6

cm of entering the plasma.
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Figure 6.35   Attenuation of the He(2 1S) and He(2 3S) metastable levels. On entry to the plasma the

beam content consisted of  10 % He(2 3S) and 90 % He(1 1S). The electron density  and temperature

profiles used are shown in figure 6.27.

In table 6.3 we have tabulated the percentage of the He(2 3S) metastable population

which is attenuated as a function of the penetration depth for a range of beam

energies. We have also shown two additional tables ( tables 6.4 & 6.5 ) which

ill ustrate the attenuation of the He(2 3S) metastable as the initial metastable

population is increased.
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90 % He(1 1S)   10 % He(2 3S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 6.10 2.90 2.20 1.40 1.30 1.30 1.70
0.0248 14.60 7.20 5.40 3.60 3.40 3.50 4.40
0.0372 24.70 12.50 9.50 6.50 6.20 6.30 8.00
0.0496 35.30 18.60 14.30 9.90 9.50 9.70 12.40
0.0620 45.80 25.20 19.60 13.80 13.20 13.60 17.20

Table 6.3   Attenuation of the He(2 3S) metastable as a function of penetration depth for a range of

beam energies. The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies. The initial beam content was 90 % He( 1 1S) and 10 %

He(2 3S).

80 % He(1 1S)   20 % He(2 3S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 6.12 2.92 2.18 1.42 1.33 1.33 1.41
0.0248 14.70 7.21 5.45 3.63 3.43 3.47 3.69
0.0372 24.77 12.57 9.58 6.52 6.20 6.31 6.72
0.0496 35.42 18.68 14.38 9.96 9.51 9.72 10.35
0.0620 45.92 25.27 19.66 13.84 13.25 13.56 14.44

Table 6.4   Attenuation of the He(2 3S) metastable as a function of penetration depth for a range of

beam energies. . The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies. The initial beam content was of 80 % He(1 1S) and 20

% He(2 3S).

70 % He(1 1S)   30 % He(2 3S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 6.13 2.92 2.19 1.42 1.33 1.33 1.41
0.0248 14.73 7.22 5.46 3.64 3.43 3.48 3.69
0.0372 24.80 12.59 9.59 6.53 6.20 6.31 6.72
0.0496 35.46 18.70 14.40 9.97 9.51 9.72 10.36
0.0620 45.97 25.29 19.68 13.84 13.26 13.56 14.44

Table 6.5   Attenuation of the He(2 3S) metastable as a function of penetration depth for a range of

beam energies. The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies. The initial beam content was 70 % He(1 1S) and 30 %

He( 2 3S).

In figure 6.36 we show the attenuation of the He(1 1S) ground state for a beam with

an initial content comprising  of 90 % He(1 1S) and 10 % He(2 1S). It can be seen

that the He(1 1S) level shows the usual characteristics. However in figure 6.36, we
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observe that the He(1 1S) population, within a few centimetres of entering the

plasma, exceeds its initial value of 90 % due to the rapid transfer from the He(2 1S)

metastable via the He(2 1P). As we increase the beam energy the net contribution

from the He(2 1S) metastable to the He(2 1P) level is reduced. This is due to the

influence of ion impact ionisation which depopulates the He(2 1S) metastable.

2.50 3.00 3.50 4.00

0.0

0.2

0.4

0.6

0.8

1.0

R
E

LA
T

IV
E

   
   

P
O

P
U

LA
T

IO
N

RADIAL   POSITION ( m )

 100   eV amu-1

 500   eV amu-1

 1     keV amu-1

 5     keV amu-1

 10   keV amu-1

 20   keV amu-1

 30   keV amu-1

Figure 6.36   Attenuation of the He(1 1S) ground state as a function of radial position for a range of

beam energies. The electron and temperature profiles used are that shown in figure 6.27.  On entry to

the plasma the beam consisted of 10 % He(2 1S) and 90 % He(1 1S).

If we were to increase the initial He(2 1S) metastable population, the contribution to

the ground state population would increase. This can be observed in figure 6.37

where we show the behaviour of the He(1 1S) population as a function of radial

position for different initial He(2 1S) metastable  populations.
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Figure 6.37    Attenuation of the He(1 1S) ground state as a function of radial position for a range of

beam energies. From left to right we show the extent of  increase the  He(2 1S) metastable fraction by

10, 20 and 30 %. The electron and temperature profiles used are that shown in figure 6.27.

In figure 6.38 we now show the attenuation of the He(2 1S) and He(2 3S) metastables
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Figure 6.38   Attenuation of the He(2 1S) and He(2 3S) metastable as a function of radial position for a

range of beam energies. The initial contents of the beam consisted of 10 % He(2 1S) and 90 % He(1
1S). The electron density and temperature profiles which were used are shown in figure 6.27.



202

As can be observed, the He(2 1S) is also strongly attenuated as the beam enters the

plasma. The He(2 3S) level once again shows the unique rise in population on entry

to the plasma and then a decay and then an increase once again. The attenuation of

the He(2 1S) level is strong and merely reflects the large ionisation coeff icient

associated with the He(2 1S) level. In table 6.6,  we have tabulated the percentage of

the  He(2 1S) population which is attenuated as a function of radial position. We have

also included two additional tables (tables 6.7 & 6.6) which show similar information

but with the initial He(2 1S) population increased

90 % He(1 1S)   10 % He(2 1S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 27.30 13.80 10.20 6.40 5.90 5.80 6.00
0.0248 53.50 30.00 22.80 14.70 13.60 13.40 14.00
0.0372 73.10 45.70 35.90 23.90 22.10 21.90 22.90
0.0496 85.50 59.60 48.20 33.30 31.00 30.70 32.00
0.0620 92.67 70.80 59.10 42.30 39.60 39.40 40.90

Table 6.6   Attenuation of the He(2 1S) metastable level as a function of radial position for a range of

beam energies. The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies. The initial beam content was 10% He(2 1S) and 90%

He(1 1S).

80 % He(1 1S)   20 % He(2 1S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 27.38 13.82 10.24 6.42 5.89 5.79 6.04
0.0248 53.60 30.09 22.84 14.72 13.57 13.41 14.01
0.0372 73.20 45.83 35.94 23.93 22.16 21.96 22.92
0.0496 85.70 59.65 48.50 33.32 31.02 30.81 32.09
0.0620 92.85 70.95 59.25 42.41 39.68 39.46 41.00

Table 6.7   Attenuation of the He(2 1S) metastable level as a function of radial position for a range of

beam energies. The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies.  The initial beam content was 20 % He(2 1S) and 80 %

He(1 1S).
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70 % He(1 1S)   30 % He(2 1S)
Penetration Neutral beam energy ( eV amu-1 )
Depth (m) 100 500 1000 5000 10,000 20,000 30,000

0.0124 27.40 13.83 10.25 6.42 5.90 5.79 6.04
0.0248 53.61 30.04 22.86 14.73 13.58 13.42 14.02
0.0372 73.23 45.85 35.96 23.95 22.18 21.98 22.94
0.0496 85.76 59.70 48.33 33.35 31.04 30.83 32.12
0.0620 92.90 70.96 59.30 42.44 39.71 39.49 41.04

Table 6.8   Attenuation of the He(2 1S) metastable level as a function of radial position for a range of

beam energies. The tables contain the percentage of the beam which is attenuated as function of

penetration depth for a range of beam energies. The initial beam content was 30 % He(2 1S) and 70 %

He(1 1S).

On comparing the results contained in table 6.3 and 6.6, the former of which

concerns the attenuation of the He(2 3S) metastable, we can see that under the present

plasma conditions the He(2 1S) metastable is attenuated at a greater rate.

Finally, we consider the scenario where both of the metastable levels are

populated on entry to the plasma. We show in figure 6.39 the behaviour of both the

He(2 1S) and He(2 3S) levels as a function of radial position. The initial content of

the beam comprises  of 5 % He(2 1S), 5 %  He(2 3S) and 90 % He(1 1S).
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Figure 6.39   Attenuation of the He(2 1S) and He(2 3S) metastable levels . The initial content of the

beam consisted of  5 % He(2 1S), 5 % He(2 3S) and 90 % He( 1 1S). The electron density and

temperature profiles can be seen in figure 6.27.
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From figure 6.39 we can see that the He(2 1S) metastable is attenuated faster than the

He(2 3S) metastable. Both metastables show the typical behaviour as a function of

radial position which has been described before.

6.5.4 Additional physics of helium beam attenuation

In tokamak plasma such as JET, fluctuations in the electron temperature and density

are common, e.g. see figure 3.27. In this sub-section we explore the influence of such

rapid changes on the attenuation of the ground state and the metastable levels.

However rather than contrast the beam attenuation using profiles from different types

of plasma, we have opted to use theoretical profiles. These profiles have been

selected specifically to ill ustrate the influence due to sudden changes. In our study

we only consider  the attenuation of a helium beam, for which the initial metastable

content on entry to the plasma is zero.

6.5.4.1    Influence of the electron temperature profile
The electron temperature profile which we have selected  is sinusoidal in nature and

oscill ates between a value of 10 eV to  6 keV as a function of radial position. The

electron density profile which is employed is as before and can be seen in figure 6.40

together with the hypothetical electron temperature profile.
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Figure 6.40   Electron temperature and density profile. The temperature profile oscill ates between 10

eV and 6 keV. The electron density profile was obtained from the JET pulse 42676, to remove the

irregular features we have fitted the profile with a smooth curve.
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In figure 3.41 we show the attenuation of  He(2 1S) and He(2 3S) metastable

populations as a function of radial position. The influence of the temperature profile

on the He(1 1S) was negligible.
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Figure 6.41   Influence of the electron temperature profile on the attenuation of the He(2 1S) and He(2
3S) metastable populations. The electron density which was used is that shown in figure 6.40. The

initial metastable content of the beam was zero. Also shown is the attenuation of each of the

metastable populations using the temperature profile as shown in figure 6.27. The beam energy was 30

keV amu-1.

The attenuation of each metastable has a rather curious temperature dependence. In

the case of the He(2 1S) metastable, as the beam enters the plasma the metastable is

rapidly populated. The populating mechanism is primarily due to ion colli sions since

the edge temperature is greater than  1.5 keV and therefore the contribution due to

electron colli sions will be small . As the He(2 1S) population is attenuated it can be

observed to show periodic oscill ations. The peaks and troughs of these oscill ations

correspond to when the temperature respectively rises to 6 keV and then falls to 10

eV. When the temperature approaches 10 eV the He(2 1S) tends to a minimum. The

temperature is optimum for spin changing electron colli sions which contribute to

populating the triplet spin system from the He(2 1S) metastable. When the
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temperature  increases the influence of the spin changing electron colli sions

decreases and the rate at which the He(2 1S) metastable is depopulated is reduced.

If we now consider the behaviour of the He(2 3S) population, we can see from

figure 6.41 that since the edge temperature is very high, the He(2 3S) level is scarcely

populated on  the immediate entry of the beam into the plasma. As the temperature

profile approaches a minimum the spin changing cross sections are  active and the

He(2 3S) population begins to increase. However as the temperature begins to rise the

contribution to the He(2 3S) metastable is reduced and the population is then strongly

attenuated. If we compare the oscill ating nature of the He(2 1S) and He(2 3S) it can

be seen that they are out of phase and when the He(2 1S) population decreases the

He(2 3S) population suddenly increases as they are both progressively attenuated.

6.5.4.2   Influence of the electron density profile

The electron density profile selected is also sinusoidal in nature and oscill ates

between 1012 to 1.9 × 1013 cm-3 as a function of radial position. We show in figure

6.42 both the electron temperature and density profile which are of concern. The

electron density profile which is employed is that as described in figure 6.27.
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Figure 6.42   Electron density and temperature profiles. The temperature profile was obtained from

the JET pulse 42676. The electron density profile oscillates from 1012 cm-3 to 1.9 × 1013 cm-3.
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The behaviour of the He(1 1S) population as it is attenuated as a function of radial

position is shown in figure 6.43. We also show the attenuation of the He(1 1S)

population using the measured electron density profile obtained from the JET pulse

42676.
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Figure 6.43    Attenuation of the He(1 1S) for a beam energy of 30 keV amu-1,  also shown in the

figure is the attenuation of the He(1 1S) using the model electron density profile obtained from the JET

pulses 42676.

It can be seen that as the beam enters the plasma it is immediately attenuated as a

result of the high edge plasma density. As the beam continues into the plasma the

behaviour of the He(1 1S) population directly reflects the changes in the electron

density profile. When the density profile reaches a minimum the He(1 1S) remains

constant as there is littl e attenuation. However as the density increases the population

of the He(1 1S) ground state decreases as a results of enhanced attenuation. A similar

behaviour can be observed in figure 6.44 where we show the attenuation of the He(2
1S) and He(2 3S) metastables.
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Figure 6.44   Attenuation of the He(2 1S) and He(2 3S) for a beam energy of 30 keV amu-1. The initial

metastable content of the beam was zero. Also shown in the figure is the attenuation of each

metastable using the measured electron density profile obtained from the JET pulses 42676.

6.6 Conclusion

In summary, we have ill ustrated the behaviour and parameter dependencies of the

colli sional-radiative cross coupling coeff icients. The neutral beam energy determines

the eff iciency at which the ion colli sions contribute to the coupling coeff icients. The

electron temperature regulates the effectiveness of the electron colli sions. The

electron colli sions contribute to the spin and non-spin changing coupling coeff icients.

The spin changing coupling coeff icients are dominated by electron colli sions and are

therefore strongly temperature dependent. Ion colli sions can only participate in spin

conserving colli sion. We have however identified a secondary dependence of the spin

changing coupling coefficients on the beam energy.

The coupling coeff icients can be used to define an effective ionisation

coeff icient associated with the ground state and the metastable levels. These

coeff icients represent the rate at which each level is ionised and includes the

influence of stepwise atomic processes. We have shown that the effective ionisation
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coeff icients associated with each metastable is substantially greater than the

coeff icient associated with the ground state. This indicates that once the metastables

are populated they will be ionised very quickly in comparison with the ground state.

The Quasi-static excited population structure has been shown to exhibit a

similar parameter dependencies to that of the cross coupling coeff icients. Electron

and ion colli sions contribute to populating the singlet spin system while the triplet

spin system is only populated by spin changing electron colli sions from the ground

state. We also considered the influence of impurities on the excited state population

structure and examined the extent to which each metastable contributes to populating

each of the excited states contained in the n=4 shell.

We have calculated the quasi-static and spatially dependent local metastable

population for JET plasma conditions. We have shown that errors can be made by

assuming that the metastables have relaxed and reached equili brium. The extent of

which  is governed by the beam energy and to a lesser degree the initial metastable

content of the beam on entry to the plasma. The beam energy governs the distance the

beam atoms can travel within the atomic li fetime of the metastables. If this distance

is greater than the scaled lengths associated with the plasma density and temperature,

then the metastables will not reach equili brium. If on the other hand the distance is

shorter than the scaled lengths of the plasma dynamics, the metastable levels will

relax and reach quasi-static equilibrium.

We have ill ustrated that the attenuation of a neutral helium beam can be

accurately modelled without considering the influence of the metastable populations,

provided that the initial metastable population is zero. However consideration of the

metastable levels is required if one wants to exploit the possibilit y of preferential

charge exchange from the ground state and the He(2 3S) metastable. Also for use

with beam emission spectroscopy a detailed knowledge of the excited state

population structure, including the influence of the metastables, is required.

We have shown that the metastable populations are formed at the edge of the

plasma and  then rapidly decay as the beam continues into the plasma. For the He(2
3S) metastable it was shown that the population increases once again as the beam

approaches the inner edge of the plasma. The extent of the attenuation of the
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metastables is governed by the rate  at which they are ionised. We investigated the

influence of modifying the initial metastable population of the beam and also the

effects  due to rapid changes in the electron density and temperature in the plasma.

The influence of the temperature and density profiles is substantial. The

temperature had littl e effect on the attenuation of the He( 1 1S) population while there

is an interesting dependency on the He(2 1S) and He(2 3S) metastables. The influence

of the electron density was more substantive with the He(1 1S) ground state and the

He(2 1S) metastable level. In summary, the metastable populations are diff icult to

sustain as the beam traverses the plasma. Nevertheless depending on the initial

metastable content, the metastable populations may be of significance for charge

exchange and of course spectroscopy.
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7.0 Thesis summary and discussion

The work in this thesis involved modelling, measuring and predicting the attenuation

and emission associated with fast neutral diagnostic beams. There were two main

beam species which were of interest. We were first concerned with modelling and

measuring the attenuation and emission associated with fast a  neutral deuterium

beam. Secondly we were involved with developing a collisional-radiative model to

predict the attenuation and emission from a fast neutral helium beam.

Focusing on the work regarding a neutral deuterium beam. Using an existing

collisional-radiative model from the ADAS system, ADAS310. We calculated and

investigated the parameter dependencies of effective beam stopping and Balmer-

alpha emission coefficients. We also developed an interactive program to allow one

to visually inspect and archive the derived data obtained from ADAS310. This

program is now part of the ADAS package and is known as ADAS312. We

investigated the accuracy of the linear interpolation and combination method which

is employed to archive and facilitate the rapid assembly of composite coefficients.

The effective stopping coefficients were used to model the attenuation of the

neutral deuterium beams at JET Joint Undertaking, while the effective emission

coefficients were employed to recover the neutral deuterium beam density using

Balmer-alpha beam emission spectroscopy.  After refinements in the analysis of the

beam emission spectrum, consistency in the charge exchange analysis and the use of

improved fundamental  atomic data which enters as input into ADAS310. We found

that that the measured beam densities agree to within 27 % of the values obtained

from the numerical attenuation calculation for single beam bank pulses, while for

double beam bank pulses the measured neutral beam densities agree to within 20 %.

Nevertheless more work is required to establish beam emission spectroscopy

as a truly reliable diagnostic in the sense that it can replace the  numerical attenuation

calculation. The most immediate difficulty involves analysing vast numbers of

spectra accurately and efficiently. Even though we have demonstrated that the

spectral fitting of only the +π3 and +π4 components  is sufficient to recover the beam

density,  it is more accurate to consider the analysis of all of the Stark components.

The analysis of the beam emission spectrum should really be done on an interactive
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basis where more consideration is given to the residuals obtained from the synthetic

and measured spectrum. A possible long term goal would be to build up a database of

analysed spectra which could then be used as a training set for a neural network. The

neural network could then be used to analyse the bulk of the spectra.

If we now consider the work concerning a fast neutral helium beam. We have

developed a collisional-radiative model to predict the attenuation and emission

associated with a fast neutral helium beam. This program is an off line FORTRAN

code and is intended to be  placed into the ADAS package as ADAS311 in the near

future. ADAS311 is a spin resolved model which calculates the equilibrium

populations of each of the angular sub-states up to an arbitrary principal quantum

shell, above which the population of each principal quantum shell is then calculated.

The model also calculates collisional-radiative cross coupling and recombination

coefficients. We have also developed a computational tool, analogous to ADAS312,

which is employed to allow one to inspect and archive the derived atomic data

obtained from ADAS311. This program is also intended for use within the ADAS

package as ADAS313.

Using ADAS311 and ADAS313 we have studied the quasi-static excited

population structure of the beam atoms. We also considered the influence of the non-

equilibrium metastables on the population of the levels contained within the n=4

shell. The parameter dependencies of the collisional-radiative coupling coefficients

were also explored and later used to model the evolution of the metastable

populations. For a beam where the initial metastable content is zero, we have shown

that the metastable levels are populated on entry to the plasma and are then  strongly

attenuated as the beam continues. Modifying the initial metastable content of the

beam does enhance their survival, however spectroscopic observations are now

required to investigate whether the metastable populations are suffice to enable

preferential charge exchange from the ground state and the metastable levels to

occur.

Spectroscopic observations with a neutral helium beam would also allow us

to experimentally validate and improve upon our model. In the case of a fast helium

beam ( > 50 keV amu-1 ), since the fundamental ion-atom collision data is more
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accurately known in this region, it is expected that there would be good agreement

between theory and experiment. This however is not the case for a low energy beam (

E < 10 keV amu-1 ), the fundamental data in this region has a greater uncertainty and

so  discrepancies between theory and experiment are to be expected. Also the

influence of the Lorentz electric field has not been taken in account in our model and

it is in this region where its influence is most significant.
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Appendix A.

1.0 Review of the fundamental ion-atom collision database

The ion-atom colli sion database is utili sed by ADAS310 to replace  the  cross-

sections which have been calculated internally using approximate methods. The

database, which is of the ADAS ADF02 type format, contains fundamental cross

sections for ion impact ionisation and excitation of neutral H with impurity species

up to the first period. Charge exchange data from neutral H is also included. The

cross sections are tabluated as a function of colli sion energy per atomic mass unit and

can also be used to describe the behaviour of the atomic processes associated with

neutral deuterium and tritium. The main species of interest in this work being

deuterium. The database was originally constructed in 1989 by Summers[54] and was

later reviewed in 1991 and  partially updated in 1993. Where possible, theoretical and

experimental values were combined to give a composite data set  for each individual

atomic process. This database  is referred to as the JET 1989 data. To update the

present  database involved reviewing  the literature for both  theoretical and

experimental  cross sections. The aim being to either create a new composite data set

for each individual process or to simply supplement an existing data set with

improved data. The ion-atom data assessment presented here represents the best

available data up until March 1997.

1.1 Review of Ion impact ionisation  data

The existing database contains fundamental data for  ion impact ionisation of neutral

H(1s)beam as described in equation 1.1 , where  Z0 is the nuclear charge of the

impurity and ranges from  1 to 10.

X H s X H eZ
beam

Z
beam

+ + + −+ → + +0 01( ) 1.1

The data used for the case when Z0 = 1, i.e. ion impact ionisation of neutral H(1s)beam

with H+ , was a composite data set compiled from the experimental  work of Shah &

Gilbody[87], Shah, Elli ot & Gilbody[88] and the theoretical calculations of Ryufuku
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[89].  This was compared with the data reported by Janev & Smith[90], see figure

1.0. There is excellent  agreement. The data reported by Janev & Smith[90] is a

composite data set constructed from the experimental and theoretical data reported by

eight independent sources. We decided to combine the  data reported by Janev &

Smith[90] with the existing data to construct a new data set. This was achieved by

modifying the peak value of the existing data set to agree with the value reported by

Janev & Smith[90]. The new data set  is  the preferred  data for this process and is

referred to as the comparative data set.
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Figure 1.0   A plot of the ion impact  ionisation cross section Vs energy. A comparative data set was

constructed by modifying the peak value of the existing composite data set to agree with the results

reported by Janev & Smith [90]. The comparative data set is taken as the preferred data.

The data employed for  Z0 = 2, was a composite data set compiled by Hugh

Summers, this data set was based on the experimental work of Shah & Gilbody[87]

and Shah, Elli ot & Gilbody[88]. A comparison was made between this data set and

the theoretical work of Toshima & Tawara[91]. The results can be seen in figure 2.0 .

Below 90 keV/amu both data sets agree, however above 90 keV/amu there is a slight

difference. Since the composite data set is based on experimental measurements it is

taken as the preferred data set for this  process. For convenience of reference the new

preferred composite data set is called the comparative data set, see figure 2.0
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Figure 2.0   A plot of the ion impact  ionisation cross section Vs energy. The composite data set is

based on experimental measurements and is taken as the preferred data. For convenience the preferred

data set is called the comparative data set.

For Z0 = 3, the data used was a composite data set based on the work of Shah

& Gilbody[87] . A comparison was made between this data set and the data of

Toshima & Tawara[91], see figure 3.0.  As before, due to the  influence of

experimental data,  the composite data set  it is taken as the preferred data set. The

preferred data set is called the comparative data set, see figure 3.0 . The data used for

Z0 = 4, was a composite data set which was obtained by interpolating between the

data of neighbouring species. This data was compared to the work of Janev &

Smith[90] and Toshima & Tawara[91]. The results can be observed in figure 4.0 .

The data of  Janev & Smith[90], which is based on the work of three independent

workers, is taken as the preferred data. When Z0 = 5,  a composite data set compiled

by Summers[54] was used. This was compared to the new calculations of  Toshima

& Tawara[91] and the data reported by Janev & Smith[90] ,  see  figure 5.0. The data

reported by Janev & Smith[90] is a composite data set based on the work of eight

independent sources and is taken as the preferred data.
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Figure 3.0   A plot of the ion impact  ionisation cross section Vs energy. The composite data set is

taken as the preferred data set and for convenience  it is referred to as the comparative data set.
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Figure 4.0   A plot of the ion impact  ionisation cross section Vs energy. The data of Janev &

Smith[90] which is based on the work of three independent sources is  taken as the preferred data set.
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Figure 5.0   A plot of the ion impact  ionisation cross section Vs energy. The data of Janev &

Smith[90] is based on the work of eight independent sources and is taken as the preferred data set.

A  composite data set  based on the work reported in the ‘red book’ [92] was used for

when Z0 = 6. This data set was compared to the work of Janev & Smith[90] and the

theoretical calculations of Toshima & Tawara[91]. Figure 6.0 illustrates the results.
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Figure 6.0   A plot of the ion impact  ionisation cross section Vs energy. The data of Janev &

Smith[90] is taken as the preferred data.
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The data of  Janev & Smith[90], which is based on the results of many workers, is

considered to be the best for this particular process. For Z0 = 7, a data set which has

been obtained by interpolating through the data of neighbouring species was used.

This data set was compared to the work of Toshima & Tawara[91] . A comparative

data set was constructed by interpolating through the data of neighbouring species

using the data reported by Janev & Smith[90]. The comparative data set  is chosen as

the preferred data set for this process, see figure 7.0 .
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Figure 7.0    A plot of the ion impact  ionisation cross section Vs energy. The comparative data set is

taken as the preferred data.

When Z0 = 8, data based on the ‘red book’ [92] was used. This data was  compared

to the calculations of  Toshima & Tawara[91] and the composite data reported by

Janev & Smith[90]. The results can be seen in figure 8.0. The data of  Janev &

Smith[90] is based  on four independent sources and is taken to be the best. The data

used for Z0 = 9 was a composite data set which was obtained by interpolating

between neighbouring species, see figure 9.0 . For Z0 = 10, a composite data set was

used which was obtained by scaling the oxygen data, see figure 9.0. A review of the

literature failed to improve the data for these species.
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Figure 8.0   A plot of the ion impact  ionisation cross section Vs energy. The data reported by Janev &

Smith[90] is taken as the preferred data set.
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Figure 9.0   A plot of the ion impact  ionisation cross section Vs energy. The data for F+9 both  was

obtained by interpolating through the data of neighbouring species. The data for Ne+10 was obtained

from scaling  the data for Oxygen . A review of the literature failed to improve the data for both

species.
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1.2 Review of charge exchange data

The existing database contains fundamental data for  charge exchange from H(1s)beam

as described in equation 1.2 , where  Z0 is the nuclear charge of the impurity and

ranges from  1 to 10.

X H s X HZ
beam

Z
beam

+ + − ++ → +0 0 11( ) 1.2

The data used for Z0 = 1, was a composite data set based on the work of  Mc

Clure[93] & Greenland[94]. This data was compared to the data reported by Janev &

Smith[90], the results can be seen in figure 10.0 .
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Figure 10.0   A plot of the charge exchange cross section Vs energy. The data of Janev & Smith[90] is

taken as the preferred data.

The data of Janev & Smith[90], which is based on the work of twelve independent

sources, is the preferred data set. When Z0 = 2, the data which was used is a

composite data set based on the work of Frieling[95]. A comparison between this

data set and the work of Janev & Smith[90] and Toshima & Tawara[91] can be

observed in figure 11.0 .
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Figure 11.0   A plot of the charge exchange cross section Vs energy. The data of Janev & Smith[90],

which is based on the results of many workers,  is taken as the preferred data.

The difference between the work of Toshima & Tawara[91] and Frieling[95] is some

what insignificant .The data reported of  Janev & Smith[90], which is based on the

results from many workers, is taken as the preferred data set. For Z0 = 3, the data

which was used is a composite data set constructed from interpolating through the

data of neighbouring species. This data set was compared to the theoretical

calculations of Toshima & Tawara[91], see figure 12.0 . A comparative data set was

constructed by interpolating through the data of neighbouring species using the data

of Janev & Smith[90]. The new comparative data set is taken as the preferred data

set.

The data set used when Z0 = 4, was a composite data set based on the work of

Greenland[94] and Ryufuku[96].  This data set was compared to the work of

Toshima & Tawara[91] and Busnengo et al[97],  see figure 13.0. The composite data

set is still considered to be the most accurate and is taken as the preferred data set.

For Z0 = 5, the data which was  used  is  a composite data set based on the work of

Ryufuku[96] and influenced by the data of  Z0 = 4  & 6 . A comparison between this

data  set  and  the  work  of  Toshima &  Tawara[91]  and  Busnengo et al[97]  can

be  observed  in  figure  14.0.  A  comparative  data  set  was  constructed  from
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interpolating through the data of neighbouring species. The new comparative data set

is taken as the preferred data set, see figure 14.0.
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Figure 12.0    A plot of the charge exchange cross section Vs energy. The new comparative data set is

the preferred data.
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Figure 13.0   A plot of the charge exchange cross section Vs energy. The composite data set is still

considered to be the most accurate and is taken as the best data for this particular process.
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Figure 14.0   A plot of the charge exchange cross section Vs energy. The comparative data set is taken

as the preferred data.

When Z0 = 6, a composite data set based on the work of Greenland[94] and Ryufuku

[96] was  used. A comparison was made between this data set and the work of Janev

& Smith[90] and Toshima & Tawara[91]. The results can be seen in figure 15.0 .
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Figure 15.0   A plot of the charge exchange cross section Vs energy. The data reported by Janev &

Smith[90] is taken as the preferred data.
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The data of Toshima & Tawara[91] and Janev & Smith[90] above ∼ 20 keV/amu

agree with the existing composite data set. However, there is an anomalous point in

the data set of Toshima & Tawara[91] which adds some uncertainty on the reliabilit y

of the data. The data of Janev & Smith[90] is therefore taken as the preferred data.

For Z0 = 7, a composite data set based on  interpolating through the data of

neighbouring species was used. This data set was compared to the theoretical

calculations of Toshima & Tawara[91], see figure 16.0 .  A comparative data set was

constructed by  interpolating through the data of neighbouring species using the data

reported by Janev & Smith[90]. The new comparative data set is taken as the

preferred data set.
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Figure 16.0   A plot of the charge exchange cross section Vs energy. The new comparative data set is

taken as the best data for this process.

The data used for Z0 = 8, was a composite data set based on the work of Greenland

[94] and Ryufuku[96]. This data set was compared to the data of Janev & Smith[90]

and Toshima & Tawara[91].The results can be seen in figure 17.0 . The data of

Janev & Smith[90] is taken as the preferred data. The data used for when Z0 = 9 was

a composite data set obtained by interpolating through the data of neighbouring

species, see figure 18.0. When Z0 = 10, a data set obtained by extrapolating from the

oxygen data, as well as being influence by the work of Ryufuku[96], was used, the
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results can be seen in figure 18.0. A review of the literature failed to improve the data

for these species.

0

2x10-15

4x10-15

6x10-15

8x10-15

102 103 104 105 106

Janev & Smith
Composite data set
Toshima & Tawara

O+8 + H(1s)
beam

 → O+7 + H+

beam
 

ENERGY ( eV amu-1 )

C
R

O
S

S
 S

E
C

T
IO

N
 (

 c
m

2  )

CHARGE EXCHANGE CROSS SECTION Vs ENERGY

Figure 17.0  A plot of the charge exchange cross section Vs energy. The data reported by Janev &

Smith[90] is taken as the preferred data.
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Figure 18.0   A plot of the charge exchange cross section Vs energy. The data for F+9  was obtained by

interpolating through the data of neighbouring species. The data for Ne+10 was obtained from scaling

the data for Oxygen . A review of the literature failed to improve the data for both species.



232

1.3 Review of ion impact excitation data

The existing database contains fundamental data for  ion impact excitation of

H(1s)beam as described in equation 1.3 , where  Z0 is the nuclear charge of the

impurity and n is the principal quantum number with values from 2 to 5 .

X H s X H nZ
beam

Z
beam

+ ++ → +0 01( ) ( ) 1.3

In the case were Z0 =1 and n =2 , the data used was a composite data set based on the

work of many workers [98], [99], [100], [101] and [102].  This data set was

compared to the data reported by Janev & Smith[90], the results can be seen in figure

19.0 .
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Figure 19.0   A plot of the ion impact excitation cross section Vs energy . The data of Janev &

Smith[90], for convenience of reference,  is taken as the preferred data for this particular process.

Both data sets agree, however for convenience of reference the data of Janev &

Smith[90] is the preferred data set. When n = 3 for Z0 = 1, the data which was used

is  a composite  data  set  based  on  the 1st Born approximation as well as the  work

of  many others [98], [99], [100], [101], [102] and [103]. This data set was compared

to the data reported by Janev & Smith [90], see figure 20.0
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Figure 20.0    A plot of the ion impact excitation cross section Vs energy . The data  reported by Janev

& Smith[90] is taken as the preferred data set.

The data of Janev & Smith[90] is compiled using various sources such as

[98],[99],[100] and [101], however they also include more recent work such as [104]

and [105]. Therefore the data of Janev & Smith[90] is the preferred data set. For n =

4 and Z0 = 1, the data used is based on the 1st Born approximation and the work of

Fritsch [106] and Theodosian[103]. This data set was compared to the data of Janev

& Smith[90]. The results can be observed in figure 21.0. The data of Janev &

Smith[90], which is based on the work of f ive independent sources,  is taken as the

preferred data. A composite data  set based on the 1st Born approximation and the

work of  Theodosian[103] is used when n = 5 and Z0 = 1. This data set was

compared to the data of Janev & Smith[90], see figure 22.0. The data of Janev &

Smith[90] is believed to be more accurate and is taken as the preferred data. When

Z0 = 2 and n = 2, the data employed was that reported by Fritsch & Lin[107].  This

data set was compared to the new theoretical calculations of Toshima & Tawara[91],

the results can be observed in figure 23.0 . Due to the uncertainty associated with the

anomalous peaks shown in the data of Fritsch & Lin and Toshima & Tawara, a

comparative data set was constructed from interpolating between the extremes of the

two data sets. The comparative data set  is taken as the preferred data for this process.
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Figure 21.0   A plot of the ion impact excitation cross section Vs energy . The data of Janev &

Smith[90] is taken as the preferred data set.
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Figure 22.0    A plot of the ion impact excitation cross section Vs energy . The data reported by Janev

& Smith[90] is taken as the preferred data for this particular process.
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Figure 23.0   A plot of the ion impact excitation cross section Vs energy . Due to the uncertainty

associated with the anomalous peaks in the data of Fritsch & Lin and Toshima & Tawara , the

comparative data set is taken as the preferred data for this process.

For n = 3 and Z0 = 2 a composite data set based on the work of  Fritsch[107] and

Lodge[47] was used. This data set was compared to the data of Toshima & Tawara

[91] as well as a comparative data set which has been constructed from interpolating

between the extremes of the two data sets, see figure 24.0 . The comparative data set

is the preferred data. When n = 4 and Z0 = 2, the data used is a general data set which

is scaled according to the value of  n and Z0. A comparison between this data set and

the data of Toshima & Tawara[91] and Janev & Smith[90] is ill ustrated in figure

25.0. The data of  Janev & Smith is taken as the best data as is referred to as the

comparative data set. A general composite data set which is scaled according to the

value of n and Z0  is used when Z0 = 3 and n = 2, 3 and 4.  A comparison was made

between these data sets and the calculations of  Toshima & Tawara[91]. In the case

of n =2 and 3, comparative data sets were constructed by interpolating through the

data of neighbouring species, see figures 26.0 and 27.0. In each case the comparative

data set is taken as the preferred data. The preferred data for n=4 is the general

composite data which is scaled according to Z0 and n, this is shown in figure 28.0.
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Figure 24.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 25.0   A plot of the ion impact excitation cross section Vs energy . The data reported by Janev

& Smith[90] is taken as the preferred data. The calculation of Toshima & Tawara[91] only included

states up to n = 4, ,therefore some over-estimation is present  particular for the n = 4  shell.
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Figure 26.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data set.
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Figure 27.0   A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data set.
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Figure 28.0    A plot of the ion impact excitation cross section Vs energy . The composite data set is

taken as the preferred data set. The calculation of Toshima  & Tawara only include states up to n = 4,

therefore some over-estimation is present particular for the n = 4 shell .

In the case of Z0 = 4 and n = 2, the data which was used is based on the  work of

Fritsch[107] . A comparison was made between this data set and the work of

Toshima & Tawara[91] as well as a comparative data set which was constructed by

interpolating through the data of neighbouring species. The results can be observed in

figure 29.0 . The comparative data set is taken as the preferred data.
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Figure 29.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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When Z0 =4 and n =3 the data which was used is  based on the work of Fritsch[107].

This was compared to the data of  Toshima & Tawara[91] and a comparative data set

which was obtained by interpolating through the data of neighbouring species, see

figure 30.0. The comparative data set is considered to be the best data for this

process.
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Figure 30.0    A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data for this particular process.

For Z0 = 4 and n = 4, a general data set which is scaled according to the value of  n

and Z0 is employed. The results of the comparison between this data set and the data

of  Toshima & Tawara[91] can be observed in figure 31.0 . The general scaled data

set, which is referred to as the composite data set, is the preferred data for this

process. For all other value of Z0, a general data set was used which is scaled

according to the value of n and Z0. The following figures ill ustrate the result of

comparing the data of Toshima & Tawara[91] with the appropriately scaled data.

Where possible a comparative data set, which is taken as the preferred data, was

constructed by interpolating through the data of neighbouring species. In cases were

it was not possible to construct a comparative data set, the general scaled data set is

taken as the preferred data. The general scaled data set is referred to as the composite
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data set. Finally, for Z0 =  9 and 10 the only data which existed was that of the

general scaled data and a review of the literature failed to improve the situation.
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Figure 31.0  A plot of the ion impact excitation cross section Vs energy . The composite data set is

taken as the preferred data. The calculation of Toshima & Tawara only include states up to n = 4,

therefore some over-estimation is present particular for the n = 4 shell .
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Figure 32.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data set for this process.
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Figure 33.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 34.0  A plot of the ion impact excitation cross section Vs energy . The composite data set is

taken as the preferred data. The calculation of Toshima & Tawara only include states up to n = 4,

therefore some over-estimation is present particular for the n = 4 shell .
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Figure 35.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 36.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 37.0  A plot of the ion impact excitation cross section Vs energy . The composite data set is

taken as the preferred data. The calculation of Toshima & Tawara[91] only include states up to n = 4,

therefore some over-estimation is present particular for the n = 4 shell .
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Figure 38.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data set.
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Figure 39.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 40.0  A plot of the ion impact excitation cross section Vs energy . The composite data set is

taken as the preferred data. The calculation of Toshima & Tawara[91] only include states up to n = 4,

therefore some over-estimation is present particular for the n = 4 shell .



245

0

0.2x10-15

0.4x10-15

0.6x10-15

0.8x10-15

1.0x10-15

102 103 104 105 106 107

Comparative data set
Toshima & Tawara
Composite data set

O+8 + H(1s)
beam

 → O+8 + H(n=2)
beam

ENERGY ( eV amu-1 )

C
R

O
S

S
 S

E
C

T
IO

N
 (

 c
m

2  )

ION IMPACT EXCITATION CROSS SECTION Vs ENERGY

Figure 41.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data for this particular process.
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Figure 42.0  A plot of the ion impact excitation cross section Vs energy . The comparative data set is

taken as the preferred data.
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Figure 43.0  A plot of the ion impact excitation cross section Vs energy . The calculation of Toshima

& Tawara[91] only include states up to n = 4, therefore some over-estimation is present particular for

the n = 4 shell .

1.4 Review of ion impact ionisation from excited states of  H

The database contains data for ion impact ionisation from excited states of the neutral

beam particles as described by equation 1.4, where Z0 is the nuclear charge of the

impurity and n is the principal quantum number.

X H n X H eZ
beam

Z
beam

+ + + −+ → + +0 0( )       1.4

The data which was used in all cases is a general data set which is scaled according

to the value of Z0 and n. New data by Janev & Smith[90], for Z0 = 1 and n = 2, 3, 4

& 5 was compared to the results of using the general scaled data. The results can be

seen in figures 44.0, 45.0, 46.0 and 47.0 . In all cases the data of Janev & Smith[90]

is taken as the preferred data. An interesting point to note is the fairly large difference

between the data of Janev & Smith[90] and the general scaled data in figure 45.0 .

Ionisation from excited states by impurity ion impact is one of the least precisely

known processes and so the more substantial deviations evident here are expected
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Figure 44.0  A plot of the ion impact ionisation cross section Vs energy . The data reported by Janev

& Smith[90] is taken as the preferred data.
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Figure 45.0  A plot of the ion impact ionisation cross section Vs energy . The data of Janev & Smith

is taken as the preferred data.  Interesting point to note is the significant difference between both data

sets.
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Figure 46.0  A plot of the ion impact ionisation cross section Vs energy . The data reported by Janev

& Smith[90] is taken as the preferred data.
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Figure 47.0  A plot of the ion impact ionisation cross section Vs energy . The data reported by Janev

& Smith[90] is taken as the preferred data set.

1.5 Review of charge exchange data from excited states of H

The data base also contains data for charge exchange from excited states of the

neutral beam particles as described by equation 1.5 .
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X H n X HZ
beam

Z
beam

+ + − ++ → +0 0 1( ) 1.5

Where all the symbols have there usual meaning. At the present, general scaled data

is employed for this process and a survey of the literature failed to improve the

situation.
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