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Abstract

The emission from a finite-density plasma with a non-Maxwellian distribu-
tion of free-electron energies is discussed. Families of distribution functions are
introduced as a method of measuring the degree of deviation from Maxwellian.
It is shown how rate coefficients for electron-impact reactions must be reworked
without the assumption of detailed balance at the rate coefficient level. Care is
taken that the fundamental cross-section data are adequate for such a reworking,
with particular emphasis on those reactions displaying resonant behaviour. With
these modifications, it is demonstrated that much applied modelling and applied
data can be continued almost transparently to the non-Maxwellian situation. Il-
lustration of the effect of a non-Maxwellian distribution is provided for neutral
helium emission lines and effective ionisation and recombination rate coefficients.
It is also demonstrated, however, that in certain instances, the effects due to the
distribution function cannot be distinguished from other causes such as density
dependence.
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Chapter 1

Introduction

The basis behind the majority of excited population and spectral emission models

of ions in a plasma is the assumption that the free electrons possess an isotropic,

Maxwellian distribution of speeds. This assumption is valid if energy redistribu-

tion through elastic collisions of electrons takes place on a sufficiently short time

scale so as to negate slower energy selective losses to other plasma components

or radiation. An examination of the lifetimes of the various states of atoms,

ions and electrons in the plasma must be considered before an analysis based on

such a ‘thermalised’ representation is justified (section 2.2). The work presented

here is based on situations where inputs and outputs to the free-electron energy

are of sufficient amplitude and frequency that thermalising collisions cannot re-

turn the distribution to Maxwellian form. The resultant non-Maxwellian electron

distributions are not uncommon in both laboratory and astrophysical plasmas.

It is well known that low-density, weakly-ionised technical plasmas, such as

those produced in radio frequency or microwave plasma reactors, often exhibit

markedly non-Maxwellian electron distributions (Nighan, 1970; Loureiro and Fer-

reira, 1986, 1989; Moisan et al. 1991). Many authors have attempted to calculate

precisely the nature of these distributions for electrically excited molecular (pri-

marily N2, CO and CO2) and noble gases (Behringer and Fantz, 1994; Behringer

and Fantz, 2000; Gudmundsson, 2001). However, most laboratory experiments do

not allow a direct measurement of the distribution function; a numerical solution

of the Boltzmann equation using electron-molecule cross-sections being generally

used instead. The findings have shown that the deviation from Maxwellian can

be such that using a Maxwellian function for plasma modelling is not a justified

approximation.

Behringer and Fantz (1994), reporting on low-density glow discharge plas-

mas, attempt to represent the electron distribution as an analytical function
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Figure 1.1: Electron distribution functions typical of low-temperature discharges.
The Maxwell and Druyvesteyn patterns are shown and a modelled case for a
nitrogen plasma. The kink at ∼0.8 eV reflects the energy loss to vibrational
excitation of the molecule (Behringer and Fantz, 1994).
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using as few parameters as possible. The fact that the electron distribution, in

pure N2 and N2 mixed with noble gas plasmas, differs most significantly from a

Maxwellian in the high-energy region of the distribution (see figure 1.1) led to

these authors introducing an analytical formula based on the Druyvesteyn dis-

tribution (Druyvesteyn, 1930), which falls off faster than the Maxwellian in the

high energy range. The so called ‘generalised Druyvesteyn’, thus introduced, is

discussed further in section 3.1.1.2.

X-ray emission from the atmospheres of Mars and Venus, as observed by the

Chandra spacecraft (Dennerl, 2002 and Dennerl et al. 2002), is believed to be

the result of the interaction between the solar wind and the planetary ionosphere

producing energetic electrons. Distributions showing a hot electron component

are typical of the mantle region where this interaction takes place (Spenner et

al. 1980). It has been shown through theory and simulation (Sagdeev et al.

1990; Quest et al. 1997; Dobé et al. 1999; etc.) that the counter-streaming of

the shocked solar wind plasma and the planetary ions can lead to the modified

two-stream instability (McBride et al. 1972), generating waves with frequencies

a few times above the lower hybrid frequency, provoking significant electron ac-

celeration. These energetic electrons can produce x-ray emission following their

collision with outflowing neutral gas and heavy ions in the ionosphere (Bingham

et al. 1997; Shapiro et al. 1999).

Such energisation of electrons, leading to distributions with an extended tail in

comparison to the Maxwellian, has wider occurrence in the astrophysical domain.

Dawson et al. (1997) postulate x-ray emission from comets by a similar mechanism

to that pertaining to the solar wind-planetary atmosphere interaction. In this

case, the solar wind interaction with the cometary plasma energises electrons and

the development of a non-Maxwellian tail to the distribution function is believed

to form. Measurements of the electron distribution of comet Halley by the Vega

spacecraft show this to be so (Gringauz and Verigin, 1990; figure 1.2). It is

suggested (Dawson et al. 1997; Bingham et al. 1997; Shapiro et al. 1998) that

soft x-ray bremsstrahlung and highly ionised ion line emission is caused by these

energised electrons. It is to be noted, though, that the bremsstrahlung part of

the soft x-ray spectrum is not yet unambiguously resolved by spacecraft such as

Chandra and that an alternative charge exchange process is widely believed to

be the primary source of cometary x-rays (Cravens, 1997; Häberli et al. 1997;

Wegmann et al. 1998; etc.). A similar mechanism, but correspondingly more

energetic, is thought to occur in supernova remnants as the expanding shell meets

gas clouds from earlier mass releases from the parent star (Spicer et al. 1990;

3
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Figure 1.2: Electron flux measurements in the vicinity of comet Halley by the
VEGA 1, 2 spacecraft (Gringauz and Verigin, 1990). The measurements suggest
the development of a non-Maxwellian tail parallel to the magnetic field of an
initial Maxwellian electron distribution function in the presence of a lower-hybrid
wave field. Such fields are expected to be energised by the interaction of the
solar wind with an ebullient cometary plasma and lead to x-ray emission. For
comparison, a Maxwellian (dashed line) at 30 eV and a synthesised distribution
(solid line) are shown. The latter comprises a Maxwellian at 10 eV combined with
a 70 eV Maxwellian Landau damped with a Gaussian wave of resonant velocity 4
times the thermal speed, and half-width of twice the thermal speed (see section
3.1.2).

Hoshino et al. 1992; Laming, 2001; Bleeker et al. 2001; Bingham et al. 2004).

The solar atmosphere has been the subject of a large number of works on

non-Maxwellian electron distributions, in particular those displaying suprather-

mal tails. An area where non-Maxwellian distributions have received significant

attention is in the heating of the coronal plasma. Why the solar corona should be

orders of magnitude hotter than the underlying chromosphere is a subject that,

while investigated for decades, remains unanswered. The usual explanation is

due to mechanical or wave heating (Narain and Ulmschneider, 1990; Browning,

1991; Zirker, 1993; Porter et al. 1994a, 1994b; Tu and Marsch, 1997) but it has

been argued by Scudder (1992a, 1992b) that these mechanisms are unnecessary

and the high coronal temperatures can be explained in terms of non-Maxwellian

4



electron distributions in the transition region.

This ‘velocity filtration’ coronal heating model postulates that the base of

the corona has free electrons with a non-Maxwellian distribution. Higher regions

then become hotter because the high-energy electrons can overcome gravity and

enter the corona.

The model of Scudder (1992a, 1992b) does not address the question of how

non-Maxwellian distributions of electrons form. Viñas et al. (2000) present such

a mechanism based on Vlasov and PIC (particle-in-cell) numerical simulations.

Their work provides evidence to support the formation and maintenance of non-

Maxwellian distributions, with the energy coming from the magnetic field.

Anderson et al. (1996) test the velocity filtration coronal heating model by

calculating predicted UV emission line intensities from the transition region, using

the κ (‘kappa’) distribution (Vasyliunas, 1968) and Maxwellian superpositions to

simulate the distribution function. They concluded that this heating does not

exactly match the emission measure observations, but acknowledge that their

model is incomplete.

Scudder (1994) points out that the velocity filtration model should result in

the solar wind possessing a non-Maxwellian distribution of electrons and Maksi-

movic et al. (1997) have fitted κ distributions to measurements of the solar wind

by Ulysses (Bame et al. 1992). They found that the fast solar wind can be fitted

with κ in the range 2–5 (see section 3.1.1.1 for more on the κ distribution and the

meaning of the κ parameter), while the slow solar wind is closer to Maxwellian.

Atomic modelling of non-Maxwellian plasmas is not without precedent.

Recent work by Smith (2003) attempts to explain anomalous helium reso-

nance line intensities in the solar transition region by considering the effect of

non-Maxwellian distributions. The distributions are approximated as locally

Maxwellian below a certain velocity, and with a power-law decline above this

velocity. Excitation and ionisation rates are calculated based on these distri-

butions, leading to estimates of the line intensities of interest. The paper does

contain problems in that modified distributions are not re-normalised, so the han-

dling is not generic. Also, the calculation of rate coefficients is based on analytic

expressions for the cross-sections which are drawn from dated sources, primarily

Mihalas and Stone (1968). Evaluation of the integrals based on more recent data

is preferable.

Further examples of atomic modelling of the solar atmosphere with non-

Maxwellian electron distributions include the work of MacNeice et al. (1991).

These authors calculated the distribution function through a solution of the
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Fokker-Planck equation applied to loops in the corona. Perhaps surprisingly,

the results show no significant differences to the ionisation balance of O, Ne or

Si in comparison with those calculated in the Maxwellian regime. This differs

from the preponderance of results in the literature; in particular, a substantial

amount of work has been published by Dzifčáková (1992, 2002) and Dzifčáková

and Kulinová (2003) on the effects of non-Maxwellian distributions on coronal

elements. Dzifčáková (1992) calculated the ionisation balance of Fe under the

influence of the κ distribution and found considerable differences in the fractions

of Fe15+–Fe17+ in the temperature range 105–108 K with κ = 2. Updated values

for these calculations can be found in Dzifčáková (2002). A similar analysis has

been carried out for C and O (Dzifčáková and Kulinová, 2003), the ionisation

peaks of these ions being found to be wider and the level populations lower (as

is verified in the present work in section 4.3) for the κ distribution compared to

Maxwellian.

Other authors (Owocki and Scudder, 1983; Doyle et al. 2003) have calculated

the effect of non-Maxwellian electrons on the ionisation balance of coronal el-

ements. Owocki and Scudder (1983), using the κ distribution, found that the

high-energy tail slightly decreases the degree of ionisation of Fe11+ to Fe12+, but

can significantly increase the ionisation of O6+ to O7+. Doyle et al. (2003) also

used the κ distribution and found that the temperature at which Fe ix lines are

produced in detectable quantities is lowered from ∼ 800, 000 K to ∼ 300, 000 K

with κ = 2–10.

The objective of the present work is to provide a first entirely general anal-

ysis of the atomic processes pertaining to the isotropic, non-Maxwellian plasma.

One must first consider the distribution functions themselves; the approach is to

introduce analytic families that correspond to experimentally observed distribu-

tions. The κ (Vasyliunas, 1968) and generalised Druyvesteyn (Druyvesteyn, 1930)

are two such families that match closely with common non-Maxwellian distribu-

tions. The κ distribution is a representation, often encountered in astrophysics,

of a distribution with an enhanced high-energy tail compared to the Maxwellian.

Contrastingly, the Druyvesteyn is an analytic form with a depleted high-energy

part of the distribution. These functions are simplified representations of the

actual distributions in plasmas. So, in addition, numerically tabulated distri-

butions from sophisticated plasma modelling calculations are considered in this

thesis, where the analytic functions, or a superposition of such, are inadequate

to describe the plasma in question. By this means, it is sought to enable the ex-

ploration of analytic paradigms in a pedagogical manner as well as the pursuit of
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high precision handling for diagnostic application in plasmas. These distributions

are described further in section 3.1.2.

An area where this work is especially rigorous, and where previous studies have

lacked such careful examination, is in the quadrature of the reaction cross-section

with the distribution function to form the reaction rate. The cross-sections used

are, where available, from the most accurate sources to date. Extensive use is

made of R-matrix calculations (Burke and Robb, 1975) and there is a systematic

revertive procedure whereby the next most accurate data is used if necessary.

This is in marked contrast to the work of other authors (see e.g. Owocki and

Scudder, 1983; Anderson et al. 1996; Smith, 2003) where common practice has

been to use simplified analytic expressions to represent the cross-section and so

simplify the evaluation of the quadratures. Using more accurate, numerically

tabulated, cross-sections inhibits non-numerical solution of the integrals, so a

careful numerical quadrature approach is required.

In this context, there is an important issue. Collision strengths obtained from

simple analytic or parametric formulae, non-resonant calculations and from data

assessment are smooth functions of energy and the forming of rate coefficients

is a further smoothing procedure. It is tacitly assumed that the tabulated colli-

sion strength can sustain quadrature over an arbitrary electron distribution func-

tion. However, more precise resonance-including calculations, e.g. the R-matrix

method, indicate that for incident electron energies between the excitation and

ionisation thresholds, the true collision strength shows many fine, highly-peaked,

resonance features. Even for a neutral target, the typical collision strength can

show detailed structure (see figure 2.1 of section 2.1.1). Thus, many collision

strengths available in the public domain are (unspecified) averages and therefore

cannot necessarily support arbitrary non-Maxwellian averaging. It seems, there-

fore, that R-matrix and similar resonance-including collision strengths must be

the starting point for computing rate coefficients in the general case. On the

other hand, the exact delimiting of a collision strength may require tabulation at

a very large number of data values — prohibitive for convenient utilisation within

database structures. For example, a recent R-matrix calculation of the collision

strength for the transition 1s2 1S − 1s2p 3P in neutral helium used ∼ 37, 000

data points to resolve detailed resonance structure over a 2 Ryd energy range

(Ballance, 2003). A more manageable tabulation of the collision strength would

require a smoothing of the data. Care must then be taken that the reduction in

tabulation does not cause the forming of a rate coefficient, by quadrature with

the distribution function, to be unacceptable in terms of the relative variability of

7



the collision strength and the distribution function. A more detailed discussion

of these concerns can be found in section 2.1.1 and Paton (2005). In any case,

beyond the resonance region, the electron impact excitation reaction rate calcu-

lations must take into account the transition type (see Burgess and Tully, 1992)

and use the appropriate high-energy limiting behaviour of Bethe (1930), Born

(Burgess and Tully, 1978) and Ochkur (1964) for non-Maxwellian modelling.

A complete re-working of each of the fundamental electron-driven atomic pro-

cesses is undertaken. By returning to the axiomatic relations governing the exci-

tation and de-excitation, ionisation and recombination reactions of electron-ion

systems, and parallelling the prescription leading to Maxwellian rate coefficients,

rate coefficients for a general distribution function are delivered. The derived use

of these coefficients is by propagation through the generalised collisional-radiative

(GCR) model (Bates et al. 1962; Summers and Hooper, 1983; Summers et al.

2005) to achieve useful derived atomic data for plasma analysis. Such modelling

must then be modified to accommodate non-Maxwellian parameters, although

calculation of the inputs is with a view to minimising the required alterations. A

major theme of the work presented here is the ease of use to the applied mod-

eller. The practical implementation of the methods described here is part of the

Atomic Data and Analysis Structure (ADAS; Summers, 1993, 2004). Existing

ADAS codes generate rate coefficients for atomic processes in the Maxwellian

framework and proceed from there to the production of derived atomic data such

as effective ionisation and recombination coefficients, ionisation stage fractional

abundances and photon emissivity coefficients. This work looks to keep the run-

ning of such codes virtually unaltered, achieved by defining the non-Maxwellian

rate coefficients in such a way that they are read in to the processing codes

allowing calculations to proceed as they would in the Maxwellian case.

Extension of the work to experimental applicability is examined from two dif-

ferent starting points. Considering the case where the electron distribution has

been arrived at through measurement, one may use all of the analysis techniques

previously available via ADAS in the Maxwellian context for the distribution in

question by beginning from the re-evaluated reaction rate coefficients and pro-

ceeding through the GCR modelling almost transparently. Perhaps the most

useful application of such calculations would be the comparison with Maxwellian

conditions. An example of such a comparison is detailed in section 4.3.

However, it is unusual that the precise nature of the electron distribution is

known, constraining the use of the above method. Some intimation of the form of

the distribution may not be out of reach — for instance, the electron distribution
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of the solar wind has been measured by Bryant (1996) and found to coincide

with the κ distribution, although the value of the κ parameter is variable and

dependent on solar conditions. Assuming there is some means of determining

the electron temperature and density of the plasma, it is possible to determine a

‘non-Maxwellian parameter’ by analysis of line ratios, in a manner similar to the

standard temperature and density diagnostic line ratios. Illustration of this can

be found in section 4.3.

It is of course recognised that non-Maxwellian effects can be difficult to iden-

tify unambiguously in plasma diagnostic analysis. Effective temperature and

non-Maxwellian parameters may be only weakly orthogonal. Also, aspects of

generalised collisional-radiative modelling, such as finite density shifts of ionisa-

tion balance and the role of populated metastables in dynamic plasma evolution,

are not always included in analysis and so mis-interpretation is possible. In this

thesis, some studies are included of these GCR effects in a pure Maxwellian con-

text for completeness and as a point of commencement.

In summary, the thesis encompasses the following: review of laboratory and

astrophysical plasmas, identifying which type of non-Maxwellian distributions are

important and, for the purposes of atomic modelling, dividing these into families

of distributions; recalculation of the familiar Maxwellian electron-driven reaction

rates for the non-Maxwellian distribution and their entry into the equations of

statistical balance for the excited populations of an ion within the GCR context;

and exploration of how the derived atomic data can then be used as a diagnostic

tool by the spectroscopic plasma analyst.

9



Chapter 2

Maxwellian Atomic Modelling

In the advance towards non-Maxwellian modelling, it is important to clarify some

issues in Maxwellian modelling. In particular, a review of the reaction rate coeffi-

cients and the generalised collisional-radiative (GCR) framework for their conver-

sion into derived quantities for spectral analysis and plasma modelling is presented

here with an emphasis given to aspects most affected by non-Maxwellian distribu-

tions (i.e. resonant processes). GCR modelling has, until now, only been carried

out for Maxwellian electron distributions; it is the norm for light elements in the

fusion plasma context, but is less widely used in astrophysical plasma studies.

GCR modelling gives substantial attention to dynamic plasmas and the role of

metastables in them. Also, it addresses fully the role of re-distributive collisions

in finite-density plasmas and the modification of effective reaction coefficients.

These effects can produce consequences similar to those of non-Maxwellians. So,

this chapter also includes some specific application studies in the Maxwellian en-

vironment, in which dynamics and finite-density are important. This is essential

to allow a safe progression on to non-Maxwellian analysis. The value of the work

of this thesis is only realisable by comparison of the experimentally measurable

quantities of the non-Maxwellian plasma to those of the Maxwellian plasma.

2.1 Reactions and Reaction Rates

The first examination is of the principal reactions and their characteristics in a

Maxwellian plasma. It is necessary to understand the conditions under which ap-

proximating the free-electron distribution to a Maxwellian is justified and when

not in the formation of reaction rates. The section introduces the reactions that

are important in determining the emission from the plasma. Since it is devia-

tions to the free-electron distribution that are considered here, electron-driven
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processes are those that are examined. The cross-sections describing these re-

actions are given and there is a discussion of the methods used in calculating

them. The emphasis is on the details that are important for non-Maxwellian

modelling. Aspects of the fundamental data, in particular, resonance structure

and smoothness, that may not be critical when analysing a Maxwellian plasma,

warrant further attention in the non-Maxwellian environment.

2.1.1 Excitation

Consider the electron-impact excitation and de-excitation of the z-times ionised

ion Az+ between lower state i and upper state j,

Az+(i) + e(εi) 
 Az+(j) + e(εj). (2.1)

The excitation energy is ∆Eij = εi−εj , where εi the free-electron energy with the

ion in the lower state i and εj the free-electron energy with the ion in the upper

state j. The reaction is described by an excitation cross-section, σi→j (εi), and a

de-excitation cross-section, σj→i (εj), although in practice it is most convenient

to work in terms of the collision strength, Ωij , which is dimensionless and more

slowly-varying with energy than the cross-section. In addition, by introducing

the statistical weight, ω, in the definition, one ensures the collision strength to be

symmetric between final and initial states. This definition, introduced by Hebb

and Menzel (1940), is expressed in terms of the cross-sections as,

Ωij (ε) = ωi

(

εi

IH

) (

σi→j (εi)

πa0
2

)

= ωj

(

εj

IH

) (

σj→i (εj)

πa0
2

)

, (2.2)

where a0 is the Bohr radius and IH the Rydberg energy constant (i.e. ionisation

energy of neutral hydrogen).

For thermal plasmas, that is plasmas for which the free electrons are

Maxwellian, the Maxwell averaged collision strength Υij(Te) is a preferred tabu-

lation as a function of electron temperature Te and is given by,

Υij(Te) =

∞
∫

0

Ωij(εj) exp

(

− εj

kTe

)

d

(

εj

kTe

)

. (2.3)

Concordant with Ωij , Υij is symmetrical between i and j. Thus, in the Maxwellian

case, both the excitation and de-excitation rate coefficients (for use in the gener-

alised collisional-radiative modelling described in section 2.2) are obtained from
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Υij as,

qi→j(Te) = 2
√

παca0
2

(

IH

kTe

)1/2
1

ωi
exp

(

−∆Eij

kTe

)

Υij(Te), (2.4)

qj→i(Te) = 2
√

παca0
2

(

IH

kTe

)1/2
1

ωj
Υij(Te), (2.5)

where α is the fine structure constant and c the speed of light in vacuum.

One of the most efficient and precise methods of calculating the excitation/de-

excitation cross-section (and it is noted that modern pseudostate R-matrix cal-

culations can also span ionisation cross-sections) is that of R-matrix (Burke and

Robb, 1975). Where such data is available, it is used in the work here presented.

The basis of R-matrix theory is the partitioning of configuration space into two

distinct regions by a sphere around the nucleus. Electron interaction in the inner

region requires inclusion of electron exchange and correlation. In this region, the

impacting electron and target nucleus are treated as a single system using a close

coupling expansion. In the outer region, the electron is considered sufficiently

remote from the nucleus to reduce the interaction to a two-body, more easily sol-

uble, problem. The connection between the two regions is described by a matrix

R, which relates the wavefunction and its derivative at the boundary.

The R-matrix method is of special importance to the present work because of

its correct and efficient handling of resonances. Resonances arise when the total

energy of the impacting electron and target ion corresponds to the energy of a

discrete, allowed state (a ‘doubly-excited’ state) of the intermediate system, i.e.

the A(z−1)+ system. This displays itself as a sharp spike, or resonance, in the

cross-section across a narrow impacting electron energy. The effect of the reso-

nance, viewed as an isolated state which breaks up again by the Auger reaction, is

in general also subject to radiative damping (and possibly also Auger damping).

Should the A(z−1)+ system undergo a radiative transition, dielectronic recombina-

tion takes place rather than excitation. In an isolated resonance approximation,

then the effect is that the resonance is damped by a factor,

Aa

Aa + Ar
, (2.6)

where Ar is the rate of recombination and Aa is the rate of Auger breakup.

Figure 2.1 shows an R-matrix calculation by Ballance (2003) of the collision

strength for the 1s2 1S−1s3s 1S transition in neutral helium. Below the ionisation

threshold value of the incident electron energy, the resonance behaviour is seen.
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Figure 2.1: Collision strength of the 1s2 1S− 1s3s 1S transition in neutral helium,
as calculated by Ballance (2003). The resonance structure resolved in detail using
the R-matrix method is evident. The threshold parameter is defined as εi/∆Eij ,
with the ionisation threshold at 1.07 on this scale.

Quadrature of the cross-section over a non-Maxwellian distribution will be shown

to be unsafe without a proper representation of the resonant region.

Incident electrons with energy above included ionisation thresholds (that is

excluding deep inner-shell loss from the N -electron configuration set in more

complex ions that neutral helium) do not introduce resonances, with the cross-

sections showing a smooth behaviour in this region. The latter region is therefore

less critical. In practice, the R-matrix method is unsound above ionisation thresh-

old unless pseudostates are included; the effect of pseudostates on the collision

strength can be seen in figure 2.1 where there is an oscillatory nature above ionisa-

tion threshold. On going to high-energy, a larger number of basis orbitals must be

included to span the continuum states and the R-matrix method becomes less ef-

ficient. There are many simpler theoretical approaches for these regions, without

the error in principle of the resonance region for non-Maxwellians, but with some

increased uncertainty. Of the methods made use of, the simplest is the plane wave

Born approach, implemented in the Cowan code (Cowan, 1981). Improved, dis-

torted wave, calculations include the work of Sampson and co-workers (Goett and

Sampson, 1983; Sampson et al. 1985a, 1985b; Sampson, 1986; Zhang et al. 1986,

1990) and the HULLAC (Bar-Shalom et al. 1988) and FAC (Gu, 2003) codes.

These include the highly efficient factorised method of Bar-Shalom et al. (1988),
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Figure 2.2: Reduced electron-impact excitation collision strengths for the
1s22s 2S− 1s22p 2P transition in Ar15+ obtained using Burgess-Tully reduced pa-
rameter in a C-plot with C = 3. The solid curve denotes the results of Whiteford
et al. (2002) using an R-matrix method showing the detailed resonance struc-
ture. The dashed curve and crosses denote the distorted-wave results presented
by Merts et al. (1980). The straight line between the last point of Merts and the
infinite-energy limit point (square box) shows the approach to the limit point.
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which splits the angular and radial parts of the distorted-wave problem to obtain

intermediate coupled cross-sections. The configuration-averaged distorted-wave

(CADW) approximation of Pindzola et al. (1986a, 1986b) which is also used for

ionisation reactions (see section 2.1.2), is also made use of. Figure 2.2 shows a

comparison of R-matrix against DW for the collisional excitation cross-section for

the 1s22s 2S − 1s22p 2P transition in Ar15+. The DW calculation is seen to trace

the form of the R-matrix calculation, but without accounting for the resonance

structure below ionisation threshold.

It has been mentioned that the resonance structure of the excitation cross-

section is of particular relevance to non-Maxwellian modelling and justification

of this is given here. Reaction cross-sections become of practical use for plasma

modelling when integrated over the electron distribution function to form rate

coefficients. This is examined further in section 3.2, but let us consider, here, what

one requires from the cross-section data for such a quadrature to be acceptable.

To take proper account of the resonance region, the collision strength must vary

more slowly with energy than the distribution function. ‘Energy scale lengths’,

in terms of incident electron energy, may be defined for the collision strength and

distribution function, as

λΩ
−1 =

d

dX
ln Ω (2.7)

λf
−1 =

d

dX
ln f, (2.8)

in terms of the threshold scaled energy X = εi/∆Eij (usually called the threshold

parameter). λΩ is the energy scale length of the collision strength, and λf that

of the distribution function f .

As an illustration of smoothing through a resonance region causing a problem,

consider the neutral helium transition 1s2 1S−1s3p3P. The resonant region of the

collision strength is shown in figure 2.3 from an R-matrix calculation (Ballance,

2003), along with a reduced smoother data set of only 14 points in comparison to

the ∼ 7000 of R-matrix. Figure 2.4 shows scale lengths of the reduced collision

strength and of a Maxwellian distribution at various temperatures. This is the

same transition as figure 2.3 but over an extended energy range, the original

collision strength data now has ∼ 34, 000 data points and the interval averaged

has 34. It is apparent that quadrature in this representation of the collision

strength with a Maxwellian below 50 eV is unsafe as the scale length of the

collision strength exceeds that of the distribution at X ' 0.2.

For non-Maxwellian distributions, the issue can be exacerbated. Figure 2.5
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Figure 2.3: Collision strength for the 1s2 1S−1s3s 1S transition in neutral helium.
The dashed line shows the R-matrix results of Ballance (2003) with ∼7000 points
and the solid line interval averages through this data to deliver 14 smoothed
tabular points. The method of calculating this averaged data can be found in
Paton (2005).

shows a similar plot to that of figure 2.4 but with a κ distribution (see section 3.1.1

for further detail) of effective temperature 50 eV. Quadrature over a Maxwellian

at this temperature was found to be safe (figure 2.4) with this collision strength,

but, on deviating from Maxwellian form, this is not so.

Detailed evaluation of Υ from equation 2.3 and its non-Maxwellian equivalents

is given in section 3.2.1, but attention is drawn here to the ‘C-plot’ of Burgess and

Tully (1992), which is found helpful and used extensively (some of the figures of

this section have already been plotted using this format). Proposed as a means

of compacting and assessing data and checking high energy limit points, the

collision strength is scaled to remove asymptotic energy dependence and plotted

as a function of collision energy mapped onto the interval [0, 1).

The scaling of the collision strength is determined by categorising each tran-

sition into one of four possible types. Type 1 transitions are optically allowed,

with a non-zero electric dipole interaction between initial and final states. The

high-energy non-relativistic limiting behaviour of such transitions is given by the

Bethe approximation (1930) as,

lim
εi→∞

Ω = A ln εi, (2.9)
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Figure 2.4: Energy scale lengths for the averaged collision strength data shown in
figure 2.3 (but over an extended energy range) and for Maxwellian distributions
with electron temperatures of 10 eV (long dashed line), 20 eV (short dashed line),
50 eV (dotted line) and 100 eV (dot-dashed line). The plot is against reduced
energy as defined by Burgess and Tully (1992) with C chosen to place ionisation
threshold at x = 0.5. Quadrature of this collision strength with a Maxwellian is
seen to be unsafe below a temperature of 50 eV.
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Figure 2.5: As in figure 2.4 but with various κ distributions in place of
Maxwellians. All distributions have effective temperature of 50 eV, with κ = 2
(long dashed line), 5 (short dashed line), 10 (dotted line), 50 (dot-dashed line).

with A a constant – the first Bethe coefficient. The reduced collision strength,

Ωr, and reduced collision energy, Er, are defined as,

Er = 1 − ln C

ln (X − 1 + C)
, (2.10)

Ωr =
Ω

ln (X − 1 + e)
. (2.11)

Optically forbidden transitions, induced by higher electric or magnetic mul-

tipole moments, are termed type 2. Limiting behaviour is given by the Born

approximation (Mott and Massey, 1949) to be,

lim
εi→∞

Ω = B, (2.12)

where the constant B is the second Bethe coefficient. The collision strength and

incident energy are C-plot scaled as,

Er =
X − 1

X − 1 + C
, (2.13)

Ωr = Ω. (2.14)

Type 3 transitions are those involving a change of spin of the ion through ex-
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change between incident and bound electron. The Ochkur approximation (1964)

gives high-energy limit behaviour as,

lim
εi→∞

Ω = D/εi
2, (2.15)

where D is a constant, leading to,

Er =
X − 1

X − 1 + C
, (2.16)

Ωr = X2Ω. (2.17)

In the above scalings, a threshold parameter, X as defined above, is used. The

parameter C is selected to optimise the distribution of tabular points along the

scaled ‘x’ axis.

Burgess and Tully also specify, in a sub-distinction in type 1, a fourth, weak

dipole, transition type, but this will not be discussed here.

2.1.2 Ionisation

The basic electron-driven ionisation reaction of an ion A in charge state z is

Az+(i) + e(ε) → A(z+1)+(j) + e(ε′) + e(ε′′). (2.18)

with the ion initially in state i and the struck electron directly entering the

continuum of the residual ion of charge state z + 1 which is left in the state

j. This is often considered as, in effect, ionisation from the ground state of the

ion Az+ to the ground state of the ion A(z+1)+. Collisional-radiative modelling

(see section 2.2), however, requires more detailed distinctions of initial and final

states. Ionisation reactions from ground and metastable states must be made

distinct from true excited states, and the final state, ground or metastable or

possibly excited, matters. Ionisation from excited states in collisional-radiative

modelling is the last stage of a multi-step process propagating from a ground or

metastable state initially. The final ionisation is dominated by the loss of the

valence or Rydberg electron directly to the continuum. This is a non-resonant

process, smoothly varying with incident electron energy. The greater concern,

then, is with ionisation in which i and j in the above equation correspond to

ground or metastable states ρ and σ. In this case the struck electron may be an

inner shell electron as well as the valence electron, giving the possibility of the
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reaction sequence,

Az+(ρ) + e(ε) → Az+(k) + e(ε′) → A(z+1)+(σ) + e(ε′) + e(ε′′), (2.19)

where Az+(k) is a resonant, doubly-excited state, which autoionises. The autoion-

isation may be in competition with a radiative reaction, stabilising the system

back into a state of the Az+ ion (see dielectronic recombination, section 2.1.3) as,

Az+(k) + e(ε′) → Az+(j) + e(ε′) + hν̃. (2.20)

Called ‘excitation-autoionisation’, it is a resonant process for which the ionisation

cross-section is not smoothly varying with incident electron energy.

Ionisation cross-section measurements primarily come from electron cyclotron

resonance (ECR) sources and from heavy-ion storage rings (e.g. CRYRING at

Stockholm, Sweden and the Test Storage Ring at Heidelberg, Germany). The

most common measurement technique is the crossed-beam method (Harrison,

1968; Dolder and Peart, 1976), examples of such measurements being Woodruff

et al. (1978), Falk et al. (1983), Linkemann et al. (1995), Müller et al. (2000) and

Fogle et al. (2003). Other methods include the hollow electron-beam technique

(Hartnagel, 1964, 1965, 1966; Hasted and Awad, 1972; Hamdan et al. 1978). Such

measurements, in principle, delimit the detail of the excitation-autoionisation

contributions with energy, but the separation of ground and metastable initial

states and resolution of the final state is difficult. In general, the source of the

target ions provides an unknown mixture of ground and metastable states, with

the metastable component cross-sections imperfectly resolved by examination of

the near-threshold (above and below) region of the measured cross-section. The

experimental database is mostly for moderate states of ionisation and can have

fairly substantial error bars through the autoionising resonance region. Ab ini-

tio theoretical methods, which can match the quality of experiment, comprise

only R-matrix with pseudostates (RMPS; Bartschat et al. 1996; Gorczyca and

Badnell, 1997; see also section 2.1.1), convergent close coupling (CCC; Bray and

Stelbovics, 1993) and time dependent close coupling (TDCC; Pindzola and Ro-

bicheaux, 1996). Whereas the R-matrix method can handle the autoionising

resonances well, it must be used with a continuum-spanning pseudostate basis to

give the non-resonant part correctly. Also, TDCC and CCC are, at the moment,

suitable for at most two electrons outside a frozen core. These theoretical methods

have been used only for a few near-neutral systems so far; recent studies include

CCC calculations for neutral Li by Schweinzer et al. (1999), and all ionisation
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Figure 2.6: CADW cross-sections for Kr20+ (Loch et al. 2002). The dotted lines
denote the contributions from the various direct ionisation routes from the 2p, 3s
and 3p sub-shells, along with the total for direct ionisation (dashed line) and the
total cross-section including excitation-autoionisation (solid line).

stages of Be by Colgan et al. (2003) using TDCC and RMPS. Of reasonable preci-

sion, but less accurate than the above, are the distorted wave methods (also used

in the calculation of excitation cross-sections, see section 2.1.1) which include

modelling of excitation-autoionisation via an independent processes approxima-

tion. The variant used most for the large-scale production of ionisation cross-

sections is the configuration-averaged distorted-wave (CADW; Pindzola, 1986a,

1986b) method. It includes detailed splitting of autoionising configurations which

span the ionisation threshold by associated intermediate coupling structure cal-

culations. In illustration, figure 2.6 shows the CADW ionisation cross-sections

for Kr20+ as calculated by Loch et al. (2002). The figure highlights direct ioni-

sation from each of the 2p, 3s and 3p shells, as well as excitation-autoionisation.

Of particular importance to the present work is the resonant region between the

ionisation threshold of the 3p-shell to that of the 2p-shell.

CADW is less reliable for ionisation of neutral and near-neutral ions, often

overestimating the cross-section (Colgan et al. 2001). Also, the approximation

becomes increasingly inaccurate as the n-shell of the impacted electron increases

(Colgan et al. 2003). Figure 2.7 shows a comparison of a cross-section as calcu-

lated by CADW (Loch et al. 2005) with experimental results for ionisation of C2+.
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Figure 2.7: The ionisation cross-section of C2+ as calculated by the CADW
method (Loch et al. 2005; solid line) and the RMPS method (Loch et al. 2005;
dashed line). The experimental results, with error bars, of Fogle et al. (2003)
show CADW to overestimate the cross-section.

CADW is seen to significantly exceed the results of experiment. The main deliv-

ered results from CADW in the international databases are as Maxwell averaged

ionisation rate coefficients.

There has been a substantial investment of effort in simple analytic and semi-

empirical expressions of ionisation cross-sections. These have their origin in the

early classical expression of the cross-section for ionisation directly to the contin-

uum given by Thomson (1912),

σi→+(ε) = 4ζπa0
2 IH

Ii

IH

ε

(

1 − Ii

ε

)

. (2.21)

ζ in the above expression signifies the number of equivalent electrons in the va-

lence shell of the target ion and Ii is the ionisation potential of state i. Note

that the expression is a function only of the incoming electron energy; it is a

total ionisation cross-section in that it has been summed over all energies of the

ejected electrons.

The wide class of relatively simple, but practical ionisation expressions, be-

yond Thomson, have been produced by focusing on the shell structure of the

target (for example Lotz, 1968) with further improvements once the categoris-

ing of excitation-autoionisation situations took place. The most successful of the
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latter is that of Burgess and Chidichimo (1983). They express the cross-section

as,

σbchid(z, ε) = C
∑

i

ζi

(

IH

Ii

)2
Ii

ε
ln

(

ε

Ii

)

W

(

ε

Ii
, z

)

πa0
2, (2.22)

where the summation is over states i of the initial ion and the function W (x, z)

is given by,

W (x, z) =

{

0 (x ≤ 1)

[ln(x)]β(z)/x (x > 1)
(2.23)

where

β(z) =
1

4

[

(

100z + 91

4z + 3

)1/2

− 5

]

. (2.24)

Experimental measurements, at the time of publication by Burgess and

Chidichimo (1983), suggested C = 2.3.

Analogous to the arguments made in section 2.1.1 concerning smoothing

through resonance regions of excitation cross-sections, special attention need be

drawn to the level of data of this reaction. Burgess and Chidichimo (1983) address

this issue by a flexible representation of Ii and ζi for the different shells of the

ionising configuration. Two distinct cases, labelled (i) and (ii) as introduced by

Burgess et al. (1977), are used. The case (i) representation holds when the lowest

autoionising level of an inner-shell excitation lies above the ionisation potential of

the outer-shell. In this case, excitation-autoionisation is incorporated into the di-

rect shell ionisation by lowering the ionisation potential of the inner-shell electron

to the energy to excite to the lowest autoionising level. Should the excitation en-

ergy of the lowest autoionising level of the inner-shell electron lie below the ionisa-

tion potential of the outer-shell electron, the case (ii) representation is used. Here,

the densely lying autoionising levels extend from below the ionisation potential of

the outer-shell electron through to the continuum. Excitation-autoionisation is

then incorporated by lowering the ionisation potential of the inner-shell electron

to that of the outer-shell electron, so that one now has a cross-section determined

by the ionisation potential of the outer-shell electron but with the number of

equivalent electrons equal to the sum of those in the inner and outer shells. This

representation holds if the autoionising levels are considered to have unit prob-

ability of autoionising, i.e. Aa � Ar. It is, therefore, unsound without further

adjustment for higher charge states as radiative decay becomes comparable to the

Auger processes. It is also to be noted that while the semi-empirical formulation

of Burgess and Chidichimo takes into account excitation-autoionisation routes,
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it does not fully resolve the resonance structure due to these paths. The semi-

empirical formulae of Burgess and Chidichimo provide both the cross-section and

the Maxwell averaged rate coefficient. The Maxwell averaged formula may be

treated as a parametric form to be fitted to best available ionisation rate coef-

ficient data. As such, it can be viewed as a ‘support function’ which gives a

reasonable representation also of the cross-section. Such support functions can

enable exploitation of the legacy of Maxwellian ionisation rate coefficients in the

international databases in the non-Maxwellian environment. This is addressed in

section 3.2 in reference to both ionisation and dielectronic recombination.

Stepwise excitation followed by ionisation from true excited states becomes

dominant in high-density, low-temperature plasmas. There is almost no high-

precision experimental or theoretical data for such cross-sections (apart from

neutral hydrogen — see Bray and Stelbovics, 1993; Bray, 2002). The most suit-

able simple theoretical formulation of the excited state ionisation is the Exchange

Classical Impact Parameter method (ECIP; Burgess, 1964). Although not a full

quantum mechanical treatment, it represents an approach beyond the simple clas-

sical binary encounter of Thomson. A properly symmetrised classical encounter

including orbital motion of the atomic electron and the possibility of electron

exchange is used for low values of the impact parameter. For large values, com-

pared with the atomic radius, a semi-classical perturbation treatment is used to

give the correct high energy behaviour. It provides the cross-section as well as

the Maxwell averaged rate coefficient.

2.1.3 Recombination

An electron recombining with an ion A(z+1)+ to form Az+ can do so by three

processes: radiative recombination, dielectronic recombination and three-body

recombination. Three-body recombination,

A(z+1)+(γ) + e(ε′) + e(ε′′) → Az+(i) + e(ε), (2.25)

with the initial ion A(z+1)+ in the state γ and i the final captured state of the ion

Az+, requires two incoming electrons to impact the ion and so is separate from

dielectronic and radiative recombination. It is the inverse process to collisional

ionisation, of which more detail was given in section 2.1.2 and where the cross-

sections governing the reaction were discussed. The relation between the three-

body recombination coefficient, α
(3)
γ+→i, and the ionisation rate coefficient, qi→γ+ ,
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is obtained from detailed balance in the Maxwellian case as,

α
(3)

γ+→i = 8

(

πa0
2IH

kTe

)3/2
ωi

2ωγ

eIi/kTeqi→γ+ . (2.26)

The notation γ+ in α
(3)
γ+→i and qi→γ+ is used to denote the state γ of the ion

A(z+1)+. The process is negligible unless the electron density is high. In the non-

Maxwellian case, it may be obtained from the differential ionisation cross-section

by detailed balance (see section 3.2) and is not considered further here.

However, quantum mechanically, dielectronic and radiative recombination are

indistinguishable processes which interfere with each other. Pindzola et al. (1992)

have shown that this interference is a very small effect and can safely be neglected

for GCR modelling. This gives the independent processes approximation whereby

dielectronic and radiative recombination can be considered separately.

Radiative recombination is essentially the non-resonant capture, equivalent to

spontaneous emission in bound states in which the electron spontaneously emits

a photon, but in a free-bound transition,

A(z+1)+(γ) + e(εl) → Az+(i) + hν̃. (2.27)

The final state i is of the form γ, n′l′. The latter notation indicates that the

parent ion state γ is passive in the process. The conversion of radiative recom-

bination from Maxwellian to non-Maxwellian distributions does not incur the

same difficulties as resonant reactions. The non-resonant nature of this process

means that cross-sections are smoothly varying, with no immediate danger in-

volved by representing the cross-section on a sparse energy grid or by invoking

simpler approximations.

Cross-section relations are determined by considering the inverse photoioni-

sation reaction (the γ, n′l′ notation is now used),

Az+(γ, n′l′) + hν̃ → A(z+1)+(γ) + e(εl), (2.28)

and the stimulated recombination process,

A(z+1)+(γ) + e(εl) + hν̃ → Az+(γ, n′l′) + hν̃ + hν̃. (2.29)

We thus have the capture cross-section Qc(ν̃), the photoionisation cross-section

a(ν̃), and the stimulated capture cross-section σ(ν̃). These are connected by the
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Milne relations,

Qc(ν̃) =

(

hν̃

mvc

)2
ωi

ωγ
a(ν̃), (2.30)

and

σ(ν̃) =
c3

8πhν̃3
Qc(ν̃), (2.31)

where m and v are the mass and speed of the impacting electron. As in the

excitation case of section 2.1.1, the Maxwell averaged recombination coefficient

is formed by integrating over the Maxwellian distribution to give,

α
(r)

γ+→i(Te) = 8

(

πa0
2IH

kTe

)3/2
πα4c

3
√

3πa0

z1
4

(

2

νi
3

)

eIi/kTe

∞
∫

Ii/kTe

giie−x

x
dx, (2.32)

where νi is the effective principal quantum number of the Rydberg electron in

state i ≡ γ, n′l′, and the free-bound Gaunt factor gii has been introduced. For

more detail on Gaunt factors and their calculation, see section 3.2.2.

Dielectronic recombination is the electron capture via resonances of the target

ion and incident electron system. This part dominates the non-resonant radiative

recombination in low-density, high-temperature plasmas, but can also dominate

at low-temperature in photoionised plasmas. In the isolated resonance approxi-

mation, it can be viewed as two discrete stages; namely, resonance capture of an

electron, followed by radiative stabilisation:

A(z+1)+(γ) + e(ε) 
 Az+(k) → Az+(i) + hν̃. (2.33)

The continuum electron energy ε ' Ec within an Auger width where Ec =

E(k) − E(γ) ' E(γ′) − E(γ) + z2/ν2. ν is the effective principal quantum

number of the Rydberg electron nl in the notation γ′, nl for the doubly excited

resonance state k and γ′ is the promoted parent state. There are two primary

factors that determine the importance of this process. Firstly, the resonance cap-

ture can undergo its inverse Auger breakup reaction before the recombination

process can be completed by the stabilisation reaction. The so-called branching

ratio for radiative stabilisation Ar/(Aa + Ar), where Aa is the Auger transition

rate and Ar the stabilising radiative transition rate, is important since it deter-

mines the effective contribution of the isolated resonance to the net dielectronic

recombination. A second determining factor is the central resonant energy of the

transition, Ec, which manifests itself as an exponential factor in the Maxwellian

situation. Taking this into account, the partial dielectronic recombination rate
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coefficient α
(d)

γ+→i from an initial metastable state, γ, into a resolved final state, i,

of the ion A+z is given by

α
(d)
γ+→i(Te) =

(

4πa0
2IH

kTe

)3/2
∑

k

ωk

2ωγ
e−Ec/kTe

×
∑

l A
a
k→γ,Ecl

Ar
k→i

∑

h Ar
k→h +

∑

m,l A
a
k→m,Ecl

, (2.34)

where ωk is the statistical weight of the (N +1)-electron doubly-excited resonance

state k, and ωγ is the statistical weight of the N -electron target state. Aa and

Ar are in inverse seconds and Ec is fixed by the position of each resonance. As

the process is inherently resonant in energy, it poses the greatest likelihood of

sensitivity when considering non-Maxwellian distributions.

There has been substantial work done on evaluating and tabulating state-

selective dielectronic recombination in Maxwellian electron plasmas. The most

recent (and an introduction to a series of papers on different iso-electronic se-

quences) is described by Badnell et al. (2003). The primary data is very extensive

and tabulated according to the format (adf09) of the ADAS Project. At issue is

whether this Maxwellian data remains useful in the non-Maxwellian electron case.

It matters whether a given state selective dielectronic recombination coefficient

depends on a single or on multiple resonances. The latter situation can occur

when more than one parent transition is possible and if an outer electron as well

as an inner electron may make the stabilising transition. The single contribut-

ing resonance is straightforward for the non-Maxwellian case since only a single

free-electron energy is sampled from the distribution function and the Maxwellian

data can be exploited. The multiple case is more difficult since there is not one

unique energy. The problem will be examined in detail in section 3.2. However,

it is noted that for dielectronic recombination, a support function, equivalent to

that used for ionisation, can be prepared. This is the ‘Burgess–Bethe general

program’ (BBGP; Badnell et al. 2003). In that work, it was demonstrated that

BBGP could be determined from relatively simple atomic energy level and tran-

sition probability data of the type generated for low-level collisional-radiative

calculations (format adf04 in ADAS) and that BBGP could be used with ad-

justable parameters to fit best available Maxwellian dielectronic recombination

data at zero density. BBGP was then used to step off from the zero density

situation to finite density (with respect to collisional redistribution of the doubly

excited intermediate resonance populations). It can be used in a like manner to

step off into the non-Maxwellian dielectronic recombination situation.
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2.2 Generalised Collisional-Radiative Mod-

elling

As previously stated, the present work seeks to be as general in applicability

as possible; generalised collisional-radiative (GCR) theory is introduced for this

purpose. The basic collisional-radiative model was introduced by Bates et al.

(1962) in an attempt to model correctly a plasma which could not be described

adequately by the low-density approximation nor by the high-density local ther-

modynamic equilibrium scenario. The generalised extension to include dynamic

treatment of metastable states was introduced by Summers and Hooper (1983).

Central to such a model is an understanding of the lifetimes of atoms in the

plasma. These lifetimes are divided into two groups based on their relaxation

timescales: the extrinsic collisional group and the intrinsic atomic group. The

collisional timescales, which depend on plasma conditions, comprise free-electron

thermalisation, τee; positive-ion thermalisation, τii; ion-electron equilibration, τie;

and ionisation, τion. The intrinsic group are purely atomic parameters, comprising

metastable radiative decay, τm; ordinary excited state radiative decay, τo; and

autoionising state decay, τa.

The rank order of the plasma particle thermalisation timescales can be deter-

mined from the particle self-collision time (Spitzer, 1956),

τ =
0.12

αca0
2

(

m

me

)1/2 (

kTe

IH

)3/2
1

Nz4 ln Λ
, (2.35)

to give relative collision times,

τee : τii : τie = 1 :
1

z4

(

mi

me

)1/2 (

Ti

Te

)3/2

:
1

z2

(π

6

)1/2 mi

me
. (2.36)

ln Λ is the Coulomb logarithm, where Λ is the ratio of the Debye length to the

distance of closest approach in Coulomb collisions. This short timescale assump-

tion for energy redistribution in electron-electron collisions is the basis behind

Maxwellian modelling of the free-electron distribution. The relatively low mass

of the electrons does also facilitate their participation in the flow of energy from in-

put and output sources, however. Such sources can be sufficiently large and rapid

that energy re-distribution amongst electrons is incomplete, non-Maxwellian dis-

tributions being the result.

For a typical astrophysical or magnetically confined fusion plasma, the order-
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ing of the atomic timescales is,

τa � τo � τm, (2.37)

where typical values for the solar atmospheric conditions of section 2.3 are,

τo ∼ 10−8

z1
4

s (2.38)

τm ∼ 10

z1
8

s (2.39)

τa ∼ 10−12 s. (2.40)

It follows that there is a natural separation of the metastable and excited and au-

toionising states of the atom. Each ionisation stage is partitioned into the ground

and metastable states, which must be treated dynamically, and the excited and

autoionising states, treated as in quasi-static equilibrium with the metastables.

The GCR model provides a connection between the dynamic and quasi-static

populations.

When modelling a plasma, comparison of the timescales of the plasma to

atomic parameters is made. It is essential in determining which processes to

model dynamically that these timescales are also related to those of the tran-

sient plasma phenomena under study, τp. Section 2.3 considers situations in the

solar atmosphere where the plasma evolves on a timescale of the order of the

metastables and ionisation,

τp ∼ τm ∼ τion � τo � τee. (2.41)

It is the common assumption that electron-electron collisional timescales are

shorter than the other timescales of interest, and the free electrons have a

Maxwellian distribution. The bulk of the work presented here is of situations

where equation 2.41 does not hold, rather,

τp ∼ τm ∼ τion ∼ τee. (2.42)

The population equations of a state i of the ion Az+ are determined by con-

sidering the populating and de-populating processes of the said state. Writing
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ordinary levels with Roman indices and metastables with Greek, we have,

dNi

dt
=

∑

γ

NeN
+
γ

(

α
(r)
γ→i + α

(d)
γ→i + Neα

(3)
γ→i

)

+
∑

γ

NHN+
γ α

(cx)
γ→i

+
∑

j<i

NjNeqj→i +
∑

j>i

Nj (Neqj→i + Aj→i)

−Ni

[

∑

j>i

Neqi→j +
∑

j<i

(Neqi→j + Ai→j)

+
∑

γ

(

NeSi→γ + Aa
i→γ

)

]

, (2.43)

where the notation N and N+ refers to the populations of Az+ and A(z+1)+

respectively. The final term of equation 2.43 refers to secondary autoionisation,

and only applies to excited states built on a metastable parent. By introducing

the collisional-radiative matrix, Cij, equation 2.43 reduces to,

dNi

dt
= NeriγN

+
γ + NHr

(cx)
iγ N+

γ − CijNj, (2.44)

with a populating term,

Cij =

{

− (Aj→i + Neqj→i) i < j

Neqj→i i > j
(2.45)

a loss term,

Cii =
∑

i>j

Ai→j + Ne

∑

i6=j

qi→j +
∑

γ

NeSi→γ +
∑

γ

Aa
i→γ , (2.46)

a composite recombination coefficient,

riγ = α
(r)
γ→i + α

(d)
γ→i + Neα

(3)
γ→i, (2.47)

and a charge-exchange recombination coefficient,

r
(cx)
iγ = α

(cx)
γ→i. (2.48)

Then, using the quasi-static equilibrium postulate,

d

dt
Nσ 6= 0, (2.49)
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for metastables and,
d

dt
Ni = 0, (2.50)

for ordinary states. The equations for the metastable populations are usually

given in terms of the ‘collisional dielectronic’ effective ionisation and recombina-

tion coefficients, Scd and αcd respectively, such that,

d

dt
Nσ = −

(

Cσρ − CσjC
−1
ji Ciρ

)

Nρ +
(

rσγ − CσjC
−1
ji riγ

)

NeN
+
γ

+
(

r(cx)
σγ − CσjC

−1
ji r

(cx)
iγ

)

NHN+
γ

= −NeNσScd + NeN
+
γ αcd + NHN+

γ α
(cx)
cd . (2.51)

Populations of ordinary levels can be written,

Nj = −C−1
ji CiσNσ + C−1

ji riγN
+
γ Ne + C−1

ji r
(cx)
iγ N+

γ Ne

= F (exc)
jσ NeNσ + F (rec)

jγ NeN
+
γ + F (cx)

jγ NeN
+
γ , (2.52)

where F is the effective contribution to Nj from excitation, recombination, charge

exchange and ionisation. Note that the metastables of stage z are labelled σ and

ρ, while those of stage z + 1 are labelled γ.

In spectroscopic studies of a plasma, the line emissivity is of central impor-

tance. Widely used in astrophysical application, the method of differential emis-

sion measure (DEM) utilises the intensities of given lines to deduce plasma pa-

rameters. The intensity of a spectral line from a column of optically thin plasma

of cross-sectional area A, due to transition from upper level j to lower level i, is

given as,

Ij→i =
1

4πA

∫∫∫

Aj→iNj dx dy dz, (2.53)

where the integral is over the volume of plasma viewed.

In DEM analysis, it is assumed that only contributions to the population of

the excited state by excitation from the metastables from the same ionisation

stage need be considered, so that equation 2.52 reduces to,

Nj = F (exc)
jσ NeNσ. (2.54)

The further assumption of ionisation balance is used, such that,

Nσ =
Nσ

Ntot

Ntot

NH

NH

Ne

Ne, (2.55)
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where it is assumed that the elemental abundance, Ntot/NH, does not vary with

depth in the line of sight. The spectral line intensity can then be written as,

Ij→i =
Ntot

NH4πA

∫∫∫

Gj→i(Te, Ne)Ne
2 dx dy dz, (2.56)

where

Gj→i(Te, Ne) = Aj→i
NH

Ne
F (exc)

jσ

Nσ

Ntot
, (2.57)

usually called the contribution function, which embodies all of the relevant atomic

physics and is highly peaked in temperature. It is convenient to change the

variable of integration to electron temperature. To do this, the assumption that

electron density is constant over the relatively small range of temperatures where

Gj→i(Te, Ne) is significant is also made, reducing G to purely a function of Te.

This gives

Ij→k =
Ntot

NH4π

∫

G(Te)φ(Te) dTe, (2.58)

where φ(Te) is the differential emission measure (DEM), defined by

φ(Te) =
Ne

2

A
S

dh

dTe
, (2.59)

where S is the projected area of the emitting volume and h is the column

depth. The DEM relates to the amount of material in the temperature interval

[Te, Te + dTe] and the temperature gradient along the line of sight.

The reduction of G(Te, Ne) to purely a function of temperature is not always

appropriate. The following section investigates this in application to emission

lines from Li-like ions abundant in the solar atmosphere.

2.3 Dynamic Plasmas

Continuing from the introduction to GCR modelling in section 2.2, two areas of

interest from the upper solar atmosphere are examined. First, the well-known

discrepancy between the intensity of Li-like lines to those of a similar formation

temperature (Doyle and Raymond, 1984; Del Zanna et al. 2002) is analysed

using the GCR approach; and, secondly, there is an investigation into ultraviolet

explosive events, where evidence pointing to chromospheric origin is given.
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2.3.1 Li-Like Ions in the Solar Atmosphere

The analysis of UV and EUV lines is essential for a proper understanding of

high-temperature plasma, e.g. that found in the upper solar/stellar atmospheres.

Data from spectrographs aboard the Solar and Heliospheric Observatory (SOHO;

Domingo et al. 1995) has lead to a wealth of observations of small-scale dynamic

events observed from the Sun’s chromosphere to the transition region and corona.

On the stellar side, data from the International Ultraviolet Explorer (IUE), Space

Telescope Imaging Spectrograph (STIS/HST) and the Far Ultraviolet Spectro-

scopic Explorer (FUSE) have all provided high quality data which have been used

to diagnose properties of the atmospheres in a range of objects. Interpretation of

these data is highly dependent on many atomic physics parameters, one of these

being the ionisation fractions of the ion under consideration — see Young et al.

(2003) for a discussion of some of these within the CHIANTI database.

It has been known for many years that lines from Li-like ions can, in some in-

stances, give very different emission intensities from other isoelectronic sequences.

Following on from work by Burgess and Summers (1969), Vernazza and Raymond

(1979) showed that a significant increase in intensity can occur at high electron

densities if one considers electron-density-dependent dielectronic recombination.

In the vast majority of published ionisation fractions, the low-density assumption

is used, and therefore use of these calculations to produce a differential emission

measure (DEM) curve using a range of lines including Li-like ions can produce

discrepant results (Doyle and Raymond, 1984; Del Zanna et al. 2002). In many

instances, due to the limitation in the number of available spectral lines from IUE

data, emission measure curves for stellar atmospheres have been derived based

on data from Li-like ions, e.g. C iv 1548/50, N v 1328/42, etc.

The usual practice when considering atomic processes in high-temperature,

low-density plasmas, such as discussed here, is to adopt the coronal approxima-

tion. The turbulent nature of the solar atmosphere often results in regions of

relatively high density, however, so this approximation is not always valid. The

work here, also published in Doyle et al. (2005b), considers the emission from a

few diagnostically significant lines using a full density-dependent GCR treatment.

The focus is on functions appropriate to solar observations: the contribution func-

tion and the radiative loss function, described in section 2.2.

The contribution function was determined at four values of the electron den-

sity corresponding to different solar regimes: 106 cm−3, representing the low-

density limit; 109 cm−3 for a typical quiet Sun electron density; 1011 cm−3 an

active region; and 1012 cm−3 for a flare. These were calculated for four lines from
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Figure 2.8: The contribution function for C iv 1548 Å, upper left; N v 1238 Å,
upper right; O vi 1032 Å, lower left; and Ne viii 770 Å, lower right. The solid
line shows an electron density of 106 cm−3; the dashed line, 109 cm−3; the dotted
line, 1011 cm−3; and the dot-dashed line, 1012 cm−3.

Li-like ions (that are used for diagnostic application in SUMER (Solar Ultraviolet

Measurements of Emitted Radiation; Wilhelm et al. 1995), namely C iv 1548 Å,

N v 1238 Å, O vi 1032 Å and Ne viii 770 Å. Results are shown in figure 2.8.

It can be clearly seen that, with increasing density, G(Te, Ne) shows a significant

increase and the lines have their peak contribution shifted to lower temperature.

The variation of G(Te, Ne) with density is a result of the shift in fractional

abundance; the photon emissivity coefficient shows no significant density depen-

dence over this range. Figures 2.9 and 2.10 show the ionisation and recombination

coefficients, again for the C iv case although the results are applicable to each of

the lines. It is clear that G(Te, Ne) is affected more by recombination than ioni-

sation, with the recombination coefficient showing a factor 4 reduction on going

from 106 cm−3 to 1012 cm−3 while the ionisation coefficient shows only a factor

1.5 increase. The reduction of the recombination coefficient with density is due

to dielectronic recombination being suppressed as collisional depopulation of the
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Figure 2.9: Ionisation coefficient for the ionisation of C2+ forming C3+ at an
electron temperature of 100,000 K.
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Figure 2.10: Recombination coefficient for the recombination of C3+ forming C2+

at an electron temperature of 100,000 K.
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Line Ne = 106 Ne = 109 Ne = 1011 Ne = 1012

C iv 1548 Å 1.00 1.59 2.93 3.45
N v 1238 Å 1.00 1.17 1.38 1.37
O vi 1032 Å 1.00 1.28 1.52 1.59
Ne viii 770 Å 1.00 1.14 1.27 1.30

Table 2.1: The enhancement factor for the intensities of four lines from Li-like
ions relative to the low-density value at Ne = 106 cm−3.

high n-shells, formed after stabilisation, takes effect. This results in the ionisation

fractional abundance being shifted to lower temperature, and is reflected in the

G(Te, Ne) function.

Folding in the Raymond and Doyle (1981) DEM, the enhancement in intensity

is calculated for the 4 lines at the given densities; table 2.1 shows the results. For

C iv 1548 Å, a 60% enhancement is found for a density of 109 cm−3 as compared

to 106 cm−3, leading to over a factor of three enhancement for 1012 cm−3. The

increase is lower for the higher temperature lines, but still in the range of 30—

60%.

The DEM analysis has been an important tool in the study of solar and stellar

plasma over the past few decades. However, such an analysis can be suspect

if the selection of lines are affected by opacity, inaccurate atomic coefficients

(Lanzafame et al. 2002), or inappropriate assumptions concerning the calculation

of the ionisation fractions (Vernazza and Raymond, 1979). It has been shown here

that ignoring the density dependence of Li-like ions is unsound in the dynamic

upper solar atmosphere.

Doyle and Raymond (1984) noted that N v and, to a lesser extent, O vi

implied much larger values for the emission measure during the early stages of a

large solar flare. For N v this amounted to a factor of 2 to 3. The present results

go a long way to correcting this, with perhaps the remaining difference being

due to temporal variability (i.e. there was a 2 minute time difference between

the observation of the N v and the O v lines used in this particular study).

From the results presented here, using the Raymond and Doyle (1981) DEM, the

assumption that the low-density limit applies to Li-like ions leads to errors of up

to factors of 2–3.

Focus is now turned to the radiated power as a function of density. With the

exception of Landi and Landini (1999), all published radiative loss functions, in

connection with the solar atmosphere, were calculated in the zero-density limit.
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Figure 2.11: The percentage difference in the radiative loss function assuming
different electron densities: 106 versus 1011 cm−3 (solid line) 106 versus 1010 cm−3

(dashed line), 106 versus 109 cm−3 (dot-dashed line).

Figure 2.11 shows the percentage difference,

Diff =
Prad(Te, 106 cm−3) − Prad(Te, Ne)

Prad(Te, 106 cm−3)
, (2.60)

for the radiative loss function at various densities. In the transition region, the

difference is 10–20% while above 106 K the difference is around 30%. Although

the detail of figure 2.11 differs from that of Landi and Landini (1999), the general

result is similar. The differences are within the errors of the atomic data and, as

pointed out by Landi and Landini, larger differences can arise from an incorrect

treatment of the level populations or the use of different ionisation fractions, with

the largest variation being due to elemental abundance.

2.3.2 Ultraviolet Explosive Events

Ultraviolet (UV) explosive events (EEs), often called bi-directional jets, were first

discovered and classified as turbulent events by Brueckner and Bartoe (1983).

They are characterised by highly non-Gaussian line profiles, showing Doppler

shifts up to 250 km s−1 (Dere et al. 1989). Their average lifetime ranges from

∼ 60 to 350 s (Innes et al. 1997; Chae et al. 1998; Pérez et al. 1999), although
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Dere (1994) observed bursts of up to 30 minutes in regions undergoing magnetic

cancellation. Teriaca et al. (2004) estimate an average size of 1800km. Birthrates

over the entire Sun have been reported as 600 s−1 (Dere et al. 1989), 3300 s−1

(Ryutova and Tarbell, 2000) and 2500 s−1 (Teriaca et al. 2004).

Despite the many observations, there is still no firm understanding of UVEEs.

In particular, there is dispute over where they form in the upper atmosphere.

There have been a number of works that attempt to link transition region and

coronal manifestations of the events. Madjarska and Doyle (2002) observed, using

SUMER, the chromospheric Ly 6 (20,000 K) line and the transition region line

S vi (200,000 K). They found a time delay in the response of the S vi line with

respect to the Ly 6 line, suggesting the process that generates the event first

occurs in the low chromosphere and is subsequently observed in transition region

lines. There have also been attempts to observe the coronal counterparts to the

jets (Dere, 1994; Moses and Cook, 1994; Teriaca et al. 2001). The latter work

obtained data for an event in the transition region line N v 1238 Å, which also

showed a small enhancement in the coronal line Mg x 625 Å. They conclude,

however, that the enhancement in Mg x is due to the presence of a blend from a

Si ii line and that there is no obvious connection to the upper corona.

Doyle et al. (2003) have used non-Maxwellian electron distributions to explain

EE observations by the TRACE (Transition Region and Coronal Explorer) imager

(Handy et al. 1999). This work focuses on observations of an EE from SUMER,

CDS (Coronal Diagnostic Spectrometer; Harrison et al. 1995) and TRACE, rang-

ing from chromospheric to coronal temperatures. The EE is detected in the chro-

mospheric and transition region lines of SUMER, but not the coronal line. There

is, however, detection of lines of coronal temperature by the TRACE imager with

the 171 Å filter. These authors explain this apparent discrepancy by suggesting

that a non-Maxwellian electron distribution could result in the emission detected

by TRACE being derived from a plasma at temperature ∼800, 000 K as opposed

to ∼300, 000 K. Basing their study on the κ distribution, they find that distribu-

tions with κ = 2− 10 have the effect of lowering the temperature at which Fe ix

lines are produced in detectable quantities from ∼800, 000 K to ∼300, 000 K.

The present analysis is concerned with a region showing prolonged EE activity

in the transition region line N v 1238 Å, yet little evidence of such activity in

another transition region line, O v 629 Å, observed simultaneously.

The observational data comes from part of a joint SUMER, CDS and TRACE

study on 1999 June 1. The SUMER data set consists of Mg x 624.95 Å, O v

629.73 Å, N v 1238.82 Å, N v 1242.80 Å, C i 1249 Å and Si ii 1251.16 Å, taken
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between 09:13 UT and 11:01 UT with a 25 s exposure time. The data from CDS is

of O v 629.73 Å, with two observations of 55 minutes each starting at 07:56 UT

and 12:14 UT. The TRACE images discussed here were obtained starting at

09:02 UT and finishing at 12:00 UT. In addition to spectrographic data, three full-

disc MDI (Michelson Doppler Interferometer; Scherrer et al. 1995) magnetograms

were available, showing the EEs to appear in regions of mixed polarity weak fields.

From the data provided by these instruments, possible EEs are identified by

examining in detail regions exhibiting large line widths, indicating Doppler broad-

ening. Figure 2.12 shows images of the O v 629 Å and N v 1238 Å lines, where

enhanced regions are those with larger widths. Highlighted, are five temporal

locations, labelled (a), (b), (c), (d) and (e), that are distinguishable from the

quiet Sun in terms of their line widths. Assuming the emission of the quiet Sun

to be represented by a single Gaussian fit to its line profiles, Teriaca et al. (2004)

identified potential EEs as areas where one of the fitting parameters deviates by

more than 3σ from its average distribution; this method is used here. In the

N v profiles, these times indicated EE activity, with several of them indicating

mass flows in excess of 150 km s−1 and increases in the line intensity sometimes

exceeding the normal quiet Sun component. With exception of event (a), the O v

line profiles fail to show similar evidence of large-scale EE activity. Instead, we

see either none or, in some instances, only a minor indication of mass flows. Fig-

ures 2.13 and 2.14 show the profiles of event (b) in greater detail, where the N v

profile shows a peak of over 600 cts/pixel in the blue-shifted plasma, compared to

the 130 cts/pixel of the stationary component of the quiet Sun. The peak count

rate is similar in the O v profile for both the quiet Sun and the EE.

Ionisation balance calculations, at a typical solar electron density of 109 cm−3,

give a peak formation temperature of N4+ at 200,000 K and O4+ at 250,000 K.

The similar formation temperatures would suggest similar activity in these lines;

an examination of the density dependence of these lines is used in an attempt to

solve the discrepancy.

The G(Te, Ne) functions, as described in section 2.2, are calculated for the

O v 629 Å line — the 1s22s2 1S−1s22s2p 1P transition — and for the N v 1238 Å

line — the 1s22s 2S − 1s22p 2P transition. Results are shown in figures 2.15 and

2.16. Three values of electron density are chosen: 106 cm−3 representing the zero

density limit; 109 cm−3 for a typical quiet Sun electron density; and 1011 cm−3 for

an active region.

With increasing electron density, both lines are seen to shift to lower temper-

atures. This is the effect of dielectronic recombination suppression, as discussed
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Figure 2.12: Time series image plots for O v 629 and N v 1238 over the whole
duration of the dataset showing the variation in the line width assuming a single
Gaussian fit. The data set was taken on 1999 June 1 starting at 09:13 UT. Below
each image is shown the resulting line profile for both O v and N v taken at
the same time for five different temporal locations (09:47, 09:53, 10:00, 10:03 and
10:05 UT) labelled (a), (b), (c), (d) and (e), normalised to unity. The quiet Sun
profile is over-plotted for comparison (dashed line).
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Figure 2.13: The N v 1238 Å line profile at 09:53 UT, i.e. event (b). The quiet
Sun profile is over-plotted for comparison (dashed line).

Figure 2.14: The O v 629 Å line profile at 09:53 UT, i.e. event (b). The Si ii

1251 Å line can bee seen to the red of the O v line. The quiet Sun profile is
over-plotted for comparison (dashed line).
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Figure 2.15: Contribution function of N v 1238 Å. The solid curve shows an
electron density of 106 cm−3; the dashed curve, 109 cm−3; and the dotted curve,
1011 cm−3.
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Figure 2.16: Contribution function of O v 629 Å. The solid curve shows an
electron density of 106 cm−3; the dashed curve, 109 cm−3; and the dotted curve,
1011 cm−3.
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Figure 2.17: Fractional abundances of O4+ in the metastable term-resolved GCR
picture. The solid line shows an electron density of 106 cm−3; the dashed line,
109 cm−3; and the dotted lines, 1011 cm−3. The 2s2 1S ground and 2s2p 3P
metastable terms are shown, although the metastable is completely suppressed
at the lower two densities. For the electron density of 1011 cm−3, the upper curve
shows the ground term and the lower curve shows the metastable.
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in section 2.3.1. The more interesting difference, however, is the variation in line

flux with density. For N v, increasing the density from 106 to 1011 cm−3 results in

a 60% increase in the line flux, while the O v line shows a 30% decrease. This de-

crease in the line flux can be explained by considering the relative populations of

the metastable and ground terms of the O+4 ion. At low densities the metastable

population is negligible, but, on increasing the density, the population becomes

significant and acts as a sink to higher levels, thus causing the 629 Å transition

to be depleted. Figure 2.17 shows the fractional abundance of the metastables

of O4+ as a function of density. Li-like ions have no significant metastable, so

similar behaviour is not displayed by the N v line.

A possible explanation for the lack of major activity in the O v line for

events (b), (d) and (e) could be that EE (a) occurred in the lower chromosphere,

thereafter, following an increase in the local electron density, the EEs are less

visible in the O v line. This is consistent with the findings of Madjarska and Doyle

(2002), who found time delays between the chromospheric and transition region

lines in some EEs using high-cadence observations (10 s exposure time) obtained

with the SUMER spectrometer in the Ly 6 (20,000 K) and S vi (200,000 K).

This suggested that the process that generates these jets first occurs in the low

chromosphere, although they are best observed in transition region lines.

Further evidence for the chromospheric nature of these events comes from the

observed increase in the Si ii 1251 Å line to the red of O v (see figures 2.12 and

2.14). Furthermore, as shown in figure 2.18, the chromospheric C i line also shows

a peak in flux at these events. It is apparent that single temperature line profile

information is not sufficient to clarify the nature of these events, and consideration

of a full atomic model, including adequate representation of long-lived metastable

states, is important.

The work presented in this section is published in Doyle et al. (2005a).
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Figure 2.18: Normalised light curves for N v 1238 and O v 629 for the blue wing,
red wing and main component, plus the corresponding TRACE 173 Å band and
the weak C i 1249 line. The gaps in the TRACE light curve are missing data due
to the presence of cosmic rays.
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Chapter 3

Non-Maxwellian Modelling

The following chapter revisits the reaction rates described in section 2.1 from

a non-Maxwellian viewpoint. Issues addressed in section 2.1 regarding resonant

behaviour in collisional data are borne in mind. Application of the reaction rates

(chapter 4) will be through the GCR model of section 2.2. Each of the free-

electron-driven processes will be examined in turn, focusing on both the analytic

formalisms and the nuances of numerical techniques involved in their solution.

Consideration is also given to the distribution functions, which will be the starting

point for calculation of the non-Maxwellian rates.

3.1 Distribution Functions

The primary goal of this work is to investigate the possibility of providing diag-

nostic measurements of the non-Maxwellian character of a plasma. By spectral

analysis it is possible (for certain plasmas) to deduce the degree to which the

distribution deviates from Maxwellian. Predictive modelling of the effects of a

given distribution can also be explored by examination of how the degree of non-

Maxwellian character influences spectral emission. For both of these purposes,

it is helpful to introduce families of distribution functions with a parameter de-

termining the deviation from Maxwellian. Not every plasma is adequately rep-

resented by one of these analytic families, so numerical distributions are also

considered for predictive modelling, although the feasibility of deductive spectral

analysis is hindered.

Whatever representation of the distribution is used, the present work consid-

ers only isotropic situations. This is acknowledged as a limitation of applicability,

with many electron acceleration processes being directional — electrons in the

atmospheres of Mars and Venus, for example, are believed to be accelerated par-
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allel to the magnetic field direction (Shapiro et al. 1995; Bingham et al. 1997).

Even in such cases, an isotropic approximation can often give insight into the

primary effects of modified distribution function since electron isotropising (col-

lisions primarily with ions) and thermalising (collisions primarily with electrons)

have different timescales. While the techniques described here for generating

non-Maxwellian distribution functions and processing them through to rate co-

efficients hold for any distribution, progression to such deliverables as photon

emissivity coefficients and ionisation balance would require considerable alter-

ation of the GCR modelling to allow for anisotropic distributions.

3.1.1 Analytic Distributions

Distribution functions, f(E), as implemented here, will be defined in terms of

electron kinetic energy and will be normalised such that
∫

f(E) dE = 1. The

mean energy, Ē, and variance, σf , of the distribution are given by,

Ē =

∫

Ef(E) dE, (3.1)

and

σf =

∫

(

E − Ē
)2

f(E) dE. (3.2)

The concept of temperature is only valid for a Maxwellian distribution. The ex-

tension of this notion to non-Maxwellian distributions is by defining an ‘effective’

temperature, Teff , whereby kTeff = 2Ē/3. The Maxwellian distribution is written

as,

fTe
(E) =

1

kTe

2√
π

(

E

kTe

)1/2

exp

(

− E

kTe

)

, (3.3)

where the effective temperature is equivalent to the well-recognised electron tem-

perature, Te. Note also that Ē = 3kTe/2 and σf = kTe.

3.1.1.1 The κ Distribution Family

Common non-Maxwellian situations, particularly of astrophysical plasmas, are

over-population of a high-energy Maxwellian tail. Vasyliunas (1968) introduced

the κ distribution (also known as the generalised Lorentzian) as an analytical

representation of the electrons in the magnetosphere as measured by satellites

OGO 1 and OGO 3.
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Figure 3.1: κ distribution for various κ values, and a comparison to a Maxwellian
for an (effective) electron temperature of 1 eV. The solid line denotes the
Maxwellian distribution (κ → ∞), the dashed line κ = 10, the dotted line κ = 5
and the chained line κ = 2.

The κ family takes the form,

fκ,Eκ
(E) =

1

Eκ

2√
π

(

E

Eκ

)1/2

κ−3/2 Γ(κ + 1)

Γ(κ − 1
2
)

(

1 +
E

κEκ

)−(κ+1)

. (3.4)

The distribution is parameterised by κ and has a characteristic energy Eκ, such

that the mean energy is given by,

Ē =
3

2

κEκ

κ − 3/2
, (3.5)

and the variance by,

σf =
κEκ

κ − 3/2
. (3.6)

The parameter κ takes values in the range (3/2,∞) and determines the devia-

tion from a Maxwellian of temperature Teff , with the κ distribution tending to

Maxwellian as κ → ∞. Figure 3.1 illustrates the behaviour of the function for

various κ values at an effective temperature of 1 eV, with the limiting Maxwellian

shown for comparison.

The κ distribution has been used extensively to analyse spacecraft data since

its inception by Vasyliunas (1968). The magnetospheric plasma sheet is an area

48



10-6

10-4

10-2

100

102

104

106

101 102 103 104

f(
v)

 / 
km

-6
s3

Energy / eV

Figure 3.2: Solar wind electron velocity distribution as measured at 1000 UT on
21 October 1984 by the AMPTE UKS spacecraft (Bryant, 1996; crosses). Also
shown is the best-fitting κ distribution (κ = 2.9; dotted line) and a Maxwellian
for comparison (solid line). Both curves are at an effective temperature of 7.5 eV.

that has received particular interest over the years; Vasyliunas found distribu-

tions with κ ranging from 2 to 6, leading other authors (Lui and Krimigis, 1981;

Williams et al. 1988; Christon et al. 1988; etc.) to use a similar representation of

the distribution. Bryant (1996) found values of κ in the range 2.5–4.5 matched

the solar wind observations from the AMPTE UKS spacecraft, and others have

used the κ distribution when modelling atmospheres of Jupiter (Leubner, 1982)

and Saturn (Armstrong et al. 1983). Leubner (2001) has also shown, through

Fokker-Planck simulations (see also, section 3.1.2.2), that the κ distribution can

occur in auroral electrons. Other studies, e.g. by Hasegawa et al. (1985), show

that such a distribution can result in plasmas immersed in a suprathermal radia-

tion field. Figure 3.2 shows an example of observations of the solar wind electron

distribution being well matched by a κ distribution (Bryant, 1996).

3.1.1.2 Druyvesteyn Distribution Family

If the κ distribution is the analytical paradigm of distributions displaying an

increase of the high-energy tail compared to a Maxwellian, then the equivalent

of distributions with a depleted high-energy tail is the generalised Druyvesteyn

distribution. The Druyvesteyn (1930) distribution was derived from elastic scat-
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Figure 3.3: Druyvesteyn distribution for various values of characterising param-
eter x, and a comparison to a Maxwellian for an (effective) electron temperature
of 1 eV. The solid line denotes the Maxwellian distribution (x = 1), the dashed
line denotes x = 1.5, the dotted line x = 2 and the chained line x = 3.

tering models of the electrons in a low-pressure gas discharge. Generalisation to

include inelastic processes (Behringer and Fantz, 1994) has led to the generalised

Druyvesteyn family,

fx,Ex
(E) =

x

Ex
3/2

Γ(5/2x)3/2

Γ(3/2x)5/2
E1/2 exp

(

−
[

EΓ(5/2x)

ExΓ(3/2x)

]x)

. (3.7)

The characteristic energy of the distribution is Ex = Ē. The distribution is equiv-

alent to a Maxwellian when the characterising parameter x = 1 and the original

Druyvesteyn distribution is with x = 2. Figure 3.3 illustrates the behaviour of

the function for various x values at an effective temperature of 1 eV, with the

limiting Maxwellian shown for comparison.

Electron distribution functions in gas discharges have been studied by many

authors. For example: Nighan (1970), Winkler and Pfau (1973) and Loureiro

and Ferreira (1986, 1989) for nitrogen, Gudmundsson et al. (2000) for oxygen,

Gudmundsson et al. (1999) for an Ar/O2 mixture, while Winkler (1993) and

Capitelli et al. (1993) provide a general overview. Energetic electrons in the

discharge are lost rapidly by diffusion to the walls, resulting in a distribution

function that typically displays a depleted high-energy tail. The Druyvesteyn
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distribution family has been used to fit measurements of electron distribution

functions in gas discharges by Behringer and Fantz (1994). For a discharge of

molecular nitrogen, they found that the distribution is best represented by a sum

of two Druyvesteyn distributions so as to adequately match both high- and low-

energy behaviour. The high-energy part of the distribution is well represented

by a Druyvesteyn with parameter x in the range 1.6–2.2. The low-energy part

is closely matched by a Druyvesteyn with x = 3.5. Behringer and Fantz (1994)

also represented the distribution measured in a discharge of a noble gas mixture

with similar results. For a discharge comprised of helium, argon and nitrogen

they suggest x = 1.8 at a pressure of 1000 Pa and x = 2.9 at 200 Pa.

Gudmundsson (2001) also modelled discharge plasmas (of argon) using the

Druyvesteyn distribution. This work begins by postulating values of x likely to

characterise distributions of the plasma and investigates the effect varying x has

on the plasma parameters. The effective electron temperature is found to increase

and the electron density decrease as the distribution varies from Maxwellian to

Druyvesteyn with x = 2.

3.1.2 Numerical Distributions

The analytic distribution functions described above are simplified representations

of the actual distributions of real plasmas, allowing consequential analysis to

proceed smoothly. It can be the case, however, that the distribution function

cannot be satisfactorily approximated by any of the analytic expressions; one then

resorts to numerically tabulated distributions. Described here are two methods

used to generate non-Maxwellian distributions with application to astrophysical

plasmas. The practical implementation is discussed in section 4.2.

3.1.2.1 Darwin Particle-In-Cell Method

The evolution of particle distributions in a plasma can be described by the Vlasov

equation,

∂

∂t
f(r,v, t) + v · ∇f(r,v, t) +

q

m
(E + v ×B) · ∇vf(r,v, t) = 0, (3.8)

where the distribution is a function of position r, velocity v, and time t; and

is influenced by the Lorentz force, where q and m are the particle charge and

mass, E is the electric field, and B the magnetic field. The Vlasov equation is a

simplification in that the effects of collisions due to nearby particles are ignored.

Rather, the limit as the number of particles in a Debye sphere tends to infinity
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is taken and the distribution of particles is a smooth function of phase space.

Further simplification to the model considers the electrons to display collective

behaviour and neglects the individuality of the particles. Taking moments of the

Vlasov equation yields the fluid equations describing density, average velocity and

average energy. Note that there is no longer information on these quantities as a

function of phase space.

In theory, computer simulations of plasmas would numerically integrate the

equations of motion of all the particles moving in fields governed by Maxwell’s

equations. In practice, the large number of particles prohibits such a treatment

and simplifying assumptions must be made. There exist several methods of reduc-

ing the complexity of the problem, the choice of which is driven by the phenomena

under study. The numerical plasma simulation codes discussed here rely on two

approximations, namely the PIC (particle-in-cell) approximation and the Darwin

approximation (a comprehensive overview of all the methods discussed here can

be found in Birdsall and Langdon, 1985).

The essence of PIC modelling (introduced by Yu et al. 1965 and Hockney,

1965, 1966) is the discretisation of space and time. The particles are modelled

individually, each having its own position and velocity at every time step, which

change according to the electromagnetic forces on the particles. The magnetic and

electric fields are stored on the spatial grid and advanced according to Maxwell’s

equations.

The time cycle follows four basic stages at each time step:

• the charge and current densities are found at the discrete grid points from

the particle positions and velocities (which may take all values in phase

space)

• using these sources, integrate the field equations on the grid

• interpolate the fields from the grid to the particles, applying a force at each

particle

• calculate resultant position and velocity of the particle by integrating the

equations of motion.

Examination of the physical manifestations of the model will almost always re-

quire a large number of these cycles; at issue is how to make the time step as

large as possible without causing the numerics to break down.

The ‘standard’ hybrid code (Thomas and Birdsall, 1980) uses the PIC approx-

imation for ions but treats the electrons as a fluid. It also treats the electrons
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as massless, reducing the number of terms in the Vlasov equation that need be

considered. Low-frequency plasma modes have been eliminated by the approxi-

mations enabling a large time step to be used. Extensions to this method have

included massive electrons, which reduce the time step but gives better insight

to certain physical phenomena. Assuming fluid electrons implies an unchanging

Maxwellian distribution, a prohibited simplification for the present work where

electron acceleration systems are of concern. A PIC representation of both ions

and electrons must be included.

As well as methods of representing particles and following their orbits, one

must also be concerned with the electromagnetic field evolution. The present work

implements the Darwin approximation (Darwin, 1920; Kaufman and Rostler,

1971; Nielson and Lewis, 1976; Busnardo-Neto et al. 1977; Hewett and Nielson,

1978; Hewett, 1985), which splits the electric field into transverse and longitudinal

parts and neglects the transverse part since it is only significant for high-frequency

waves, which are of little interest. Maxwell’s equations, in this limit, reduce to,

∇ · El = 4πρ (3.9)

∇× E = −1

c

∂B

∂t
(3.10)

∇ · B = 0 (3.11)

∇× B =
4π

c
Jt, (3.12)

where ρ is the charge density, Jt is the transverse part of the current density and

El is the longitudinal part of the electric field. The physical significance of this

magnetoinductive limit is that purely electromagnetic modes are eliminated while

electrostatic and low-frequency inductive electric fields are retained. The benefit

of this is realised by considering the CFL (Courant-Friedrichs-Levy) condition

(Richtmyer and Morton, 1967) on the discretisation of space and time. This con-

straint implies that explicit integration of Maxwell’s partial differential equations

will be stable as long as electromagnetic waves do not propagate more than the

smallest grid spacing in a time step. By eliminating electromagnetic modes, the

Darwin limit permits a large time step.

Presented here are the results of a PIC Darwin code as applied to the inter-

action between the ionospheres of Mars and Venus and the solar wind. Because

Mars and Venus do not possess a significant intrinsic magnetic field, the solar wind

impinges directly on the planetary ionospheres. The counter-streaming plasmas

of the solar wind and the plasma mantle result in the modified two-stream in-

stability (MTSI; Sagdeev et al. 1990; Shapiro et al. 1995), exciting waves to a
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few times above the lower hybrid frequency. These waves can cause significant

electron acceleration and heating. It is postulated (Bingham et al. 1997; Shapiro

et al. 1999) that these fast electrons can result in strong x-ray emission by col-

liding with ionospheric ions. Indeed, x-ray emission has been observed from the

atmospheres of both Mars and Venus by the Chandra satellite (Dennerl, 2002;

Dennerl et al. 2002).

Models with relative motion between two sets of charged particles date as far

back as Pierce (1948) and Haeff (1949), and were followed by a detailed study

of the nonlinear effects of streaming instabilities by Dawson (1962). Previous

simulations (Quest et al. 1997; Szegö et al. 1997; Dobé et al. 1999), using a hybrid

code with a fluid description of electrons, showed that nonlinear development of

the MTSI within the plasma mantle can effect strong coupling between the ion

species. Extension of these codes (Quest, unpublished), with a PIC representation

of electrons, allowed the kinetic evolution of the electrons to be followed. The

code simulates the interaction as a solar wind comprising of protons streaming

through an ionosphere consisting of oxygen ions; plasma measurements at Mars by

Phobos 2 record oxygen as the most abundant element (Sagdeev and Zakharov,

1989; Dubinin et al. 1997). Electrons are also present in the model with two

initial temperatures, 33 eV to represent the solar wind and 1 eV to represent the

ionosphere (Krasnopolsky, 1975; Cloutier et al. 1993; Spenner et al. 1995). The

simulation typically consists of 4×106 particles, 6×105 time steps and 512 spatial

cells, although this depends on the proton to electron mass ratio. As a proper

ratio of 1836 was not possible due to computational time constraints, a ratio of

100 was used for an initial run. Figure 3.4(a) shows the evolution of the electron

distribution function in this case. The accelerated electrons for this run do not

possess energies high enough to coincide with the theoretical predictions, nor to

contribute to the observed x-ray emission. A larger mass ratio of 400 produced

the results of figure 3.4(b), showing accelerated electrons of sufficient energy to

fit predictions (Bryans et al. 2003).

3.1.2.2 Fokker-Planck Method

It is apparent that PIC codes, as described above, can be computationally de-

manding. An alternative numerical plasma simulation method is to monitor the

evolution of the electron distribution function as a whole rather than integrating

the effects of each individual particle. Focus here, is on Landau damping of lower-

hybrid waves (Fisch, 1978; Fisch and Boozer, 1980), of which there is considerable

interest in astrophysical regimes (Bingham et al. 1984, 1988; Retterer et al. 1986;
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Figure 3.4: Electron velocity distribution (dashed curve) in the direction of the
magnetic field as generated by PIC Darwin code. The upper plot shows the
results with a proton to electron mass ratio of 100, and the lower with a ratio
of 400. Velocity is in units of original electron thermal velocity. The original
Maxwellian distribution function (solid curve) is plotted for reference.
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Bryant et al. 1991; Bryant, 1992). Such electrostatic waves propagate parallel to

a magnetic field and, if moving with a velocity v = ω/k in a plasma, will be trav-

elling at the same velocity as some of the electrons. It is possible for the wave to

transfer energy to these electrons and vice versa. The direction of energy transfer

depends on the first derivative of the electron distribution function with respect

to velocity in the direction parallel to the magnetic field. If ∂f/∂v‖ < 0, electrons

will be energised and the waves will be damped, and if ∂f/∂v‖ > 0, the waves

will grow and the electrons decelerate. If ∂f/∂v‖ = 0 then there is no energy

transfer. Therefore, in the absence of electron collisions, the lower-hybrid waves

will cause a plateau region to be formed in the electron velocity distribution in

one direction. This can be described by the Fokker-Planck equation:

(

∂f

∂t

)

ω

=
∂

∂v‖

(

G(v‖)
∂f

∂v‖

)

, (3.13)

where G(v‖) is a normalised wave diffusion operator. Dendy et al. (1995) solved

equation 3.13 for the case of a Gaussian power spectrum,

G(v‖) =
π1/2

ωνei

∣

∣

∣

∣

eE

mvth

∣

∣

∣

∣

2 v‖
∆

exp

[

−(v‖ − v0)
2

∆2

]

, (3.14)

where ω is the wave frequency, νei is the electron-ion collision rate, vth is the

thermal speed, ∆ is the half-width of the wave power spectrum, centred at v0.

The work of Dendy et al. has been continued here using Maxwellian and other

initial distribution functions. Figure 3.5 shows a contour plot of the evolved

distribution function from an initial Maxwellian, after 3 ms, in the v⊥ and v‖ plane

with respect to a magnetic field in the parallel direction. Parameters used in the

calculation of figure 3.5 are typical of electrons in the auroral zone as measured by

Mozer et al. (1980) and Pottelette et al. (1992). It is assumed that the plasma is

collisionless. The resulting distribution is non-isotropic: the symmetry in the v‖

direction has been broken, although the distribution is still symmetrical around

all azimuthal angles. For calculating atomic collision rates one should properly

use differential cross sections, but here the distribution function is integrated over

the pitch (φ) and azimuthal (θ) angles to give a simple distribution over speed

(energy), which is then tabulated (see section 4.2).
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3 ms in a lower-hybrid Gaussian wave field of strength 40 mV/m centred on wave
velocity v0 = 1.5vth with half-width of ∆ = 0.5vth.
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3.2 Non-Maxwellian Rate Coefficients

3.2.1 Collisional Excitation and De-Excitation

For Maxwellian electron distributions, the collision strength describing electron

impact excitation between lower state i and upper state j (equation 2.1) averaged

over the distribution is the usual tabulation, given by Υij(Te) (see equation 2.3).

Ωij is symmetric between i and j from microreversibility and, likewise, in the

Maxwellian case, so is Υij from detailed balance. Thus, both the excitation and

de-excitation rate coefficients can be obtained from Υij via equations 2.4 and 2.5.

For the non-Maxwellian case, equation 2.3 must be replaced by an average

over a general distribution function, defined such that the conversion to rate

coefficient remains as it was in the Maxwellian case. Lack of detailed balance

breaks the symmetry of the Maxwellian effective collision strength, leading to the

requirement of an effective collision strength for excitation and also, separately, for

de-excitation. We call these effective collision strengths Upsilon and Downsilon

respectively. On generalising equations 2.4 and 2.5, they are given by,

Υi→j(Teff) =
ωi

2
√

παca0
2

(

kTeff

IH

)1/2

exp

(

∆Eij

kTeff

)

qi→j(Teff), (3.15)

and

Υ
j→i(Teff) =

ωj

2
√

παca0
2

(

kTeff

IH

)1/2

qj→i(Teff). (3.16)

For a general electron energy distribution, f(ε), the excitation and de-excitation

rate coefficients are given by,

qi→j(Teff) =

√

2

me

πa0
2

ωi
IH

∞
∫

0

Ωij(εi)εi
−1/2f(εi) dεj, (3.17)

and

qj→i(Teff) =

√

2

me

πa0
2

ωj
IH

∞
∫

0

Ωij(εj)εj
−1/2f(εj) dεj, (3.18)

which leads to

Υi→j(Teff) =

√
π

2
exp

(

∆Eij

kTeff

)

∞
∫

0

Ωij(εi)

(

εi

kTeff

)−1/2

f(εi) dεj, (3.19)
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and

Υ

j→i(Teff) =

√
π

2

∞
∫

0

Ωij(εj)

(

εj

kTeff

)−1/2

f(εj) dεj. (3.20)

As described in section 3.1.1, two analytic functional forms and a numerical

distribution function are considered. The solution of equations 3.19 and 3.20 are

treated separately for these cases.

For the κ distribution, equations 3.19 and 3.20 become,

Υκ
i→j(Teff) =

√

2κ

2κ − 3
κ−3/2 Γ(κ + 1)

Γ(κ − 1
2
)

exp

(

∆Eij

kTeff

)

×
∞

∫

0

Ωij

[

1 +
εj + ∆Eij

κEκ

]−(κ+1)

d

(

εj

Eκ

)

, (3.21)

and

Υκ
j→i(Teff) =

√

2κ

2κ − 3
κ−3/2 Γ(κ + 1)

Γ(κ − 1
2
)

×
∞

∫

0

Ωij

[

1 +
εj

κEκ

]−(κ+1)

d

(

εj

Eκ

)

. (3.22)

For the Druyvesteyn distribution one arrives at,

ΥD
i→j(Teff) =

√

π

6
x

Γ(5/2x)3/2

Γ(3/2x)5/2
exp

(

∆Eij

kTeff

)

×
∞

∫

0

Ωij exp

(

−
[

(εj + ∆Eij)Γ(5/2x)

ExΓ(3/2x)

]x)

d

(

εj

Ex

)

, (3.23)

and

ΥD
j→i(Teff) =

√

π

6
x

Γ(5/2x)3/2

Γ(3/2x)5/2

×
∞

∫

0

Ωij exp

(

−
[

εjΓ(5/2x)

ExΓ(3/2x)

]x)

d

(

εj

Ex

)

. (3.24)

Since we have an analytic description of the distribution function and the

collision strength tabulated as a function of energy, only the form of the collision

strength need be approximated. The collision strength is locally fitted, within

each tabulation interval, to a function that makes the integrand of equations 3.19

and 3.20 integrable analytically. The nature of the form of the collision strength
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has been given significant consideration. Quadrature with κ and Druyvesteyn

distributions is analytic, with the collision strength represented by a first or sec-

ond order power series; the integrals between tabulated energy points εi and εi+1

then take the form,

εi+1
∫

εi

Ω (1 + u)−(κ+1) du =

[

1

κ
(1 + u)−κ (w1u + w0) +

1

κ (κ − 1)
(1 + u)1−κ w1

]εi+1

εi

, (3.25)

for the κ distribution and,

εi+1
∫

εi

Ω exp (−ux) du =

[

w1

x
γ

(

2

x
, ux

)

+
w0

x
γ

(

1

x
, ux

)]εi+1

εi

, (3.26)

for the Druyvesteyn, where γ is the incomplete gamma function and the collision

strength has been approximated linearly as,

Ω = w1u + w0. (3.27)

Equivalent expressions for the second order power series are found similarly. Note

that, as a simplification, u has been introduced, although it is not equivalent in

the case of κ and Druyvesteyn distributions. For the κ distribution,

u =
ε

κEκ
, (3.28)

and for the Druyvesteyn distribution,

u =
εΓ(3/2x)

ExΓ(5/2x)
. (3.29)

In testing the validity of these approximations, it was found that quadratic

interpolation can be unsafe for certain tabulations of the collision strength. Fig-

ure 3.6 shows Υ of a Druyvesteyn distribution of x = 2 for the 1s3s 1S − 1s4p 1P

transition in neutral helium, for both linear and quadratic fits to the collision

strength. Υ displays a smooth variation with effective temperature for the linear

fit, but there is a hump in the Υ from the quadratic fit that seems unphysi-

cal. Further investigation of the behaviour of Υ is gleaned by examination of

the collision strength itself. Figure 3.7 shows the collision strength plotted in
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Figure 3.6: Effective collision strength for a Druyvesteyn distribution of x = 2
for the 1s3s 1S − 1s4p 1P excitation transition of neutral helium. The solid line
shows the results where the collision strength has been fitted linearly between
tabulated points. The dashed line shows the results where the collision strength
has been fitted quadratically.

Burgess–Tully space, with C = 5 to highlight the high energy behaviour. The

maximum deviation between the linearly and quadratically generated effective

collision strengths is in the effective temperature range 108 − 109 K. This cor-

responds to the most significant contribution from the collision strength coming

from ∼ 0.8 on the reduced energy scale of figure 3.7. The collision strength is

seen to be slowly varying in this energy range, showing no behaviour similar to

the hump seen in the effective collision strength as calculated by quadratic inter-

polation. Thus, it is likely that the hump is an unphysical result of the numerical

technique rather than any physical significance.

Figure 3.7 also indicates that, in this high-energy range, the tabulated data

is close to the high-energy limiting behaviour, as is indicated by the extension

of the curve to the Bethe limit point. Thus, it is useful to fit the data on a

logarithmic scale for the last tabulated points, as in figure 3.8. The figure shows

the final three collision strength tabulations along with fits between them. If one

considers the logarithmic fit to best follow the data in this energy range, the linear

fit is shown to underestimate the collision strength by 4% while the quadratic fit

overestimates by 25%. It is apparent that a quadratic fit is unsound for these

points, manifesting itself as the hump of figure 3.6.
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Figure 3.7: Reduced collision strength for the 1s3s 1S − 1s4p 1P transition of
neutral helium, obtained using a reduced-energy parameter of C = 5 (see text for
details). The solid line and crosses denote preferred ADAS data, and the dashed
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Figure 3.8: Collision strength for the 1s3s1S−1s4p1P transition of neutral helium.
The solid lines denote a straight line in logarithmic threshold parameter space
between tabulated points, the dashed line shows a linear fit between points, and
the dotted line shows a quadratic fit between the points.
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A further problem with quadratic interpolation is that there is the possibil-

ity of a negative collision strength should the tabulated data be decreasing with

energy. The collision strength data used in the present work is tabulated finely

enough in energy that there is no discernible advantage in using quadratic inter-

polation over linear. On moving to the high-energy region, the energy tabulation

becomes coarser but, as shown, this does not necessarily mean that a quadratic

fit will track the collision strength any more accurately than a linear fit. It is

recommended that linear interpolation be used as the standard method, with

quadratic interpolation available should the resultant effective collision strengths

be questionable. In such cases, it is prudent to examine the behaviour of the

collision strength and how the different fits match with what is expected.

Quadrature of the collision strength with a numerically tabulated distribu-

tion function requires functional fitting of both collision strength and distribution

function. Again, the collision strength is fitted by a polynomial of first or second

order, with first order being regarded preferential for the same reasons as high-

lighted above. Functional fitting of the distribution function is not as obvious as

the collision strength; the exact nature of the distribution can vary dramatically

from situation to situation. The methods employed here are intended for use on

an arbitrary distribution, so a form that is best suited to the preponderance of

distributions, whilst being portable to others, is sought. Outwith specially con-

trived experiments, electron distribution functions tend to be perturbations from

Maxwellian in the low- or high-energy range, but maintaining the general form of

the Maxwellian distribution. The tabulated distribution functions are thus fitted

locally as,

f(ε) = a
√

εe−bε. (3.30)

The effective collision strength integrals then take the form,

εi+1
∫

εi

1√
ε
f(ε)Ω dε =

[a

b
e−bε

(

w1ε +
w1

b
+ w0

)]εi+1

εi

, (3.31)

in the tabular interval [εi, εi+1] where Ω is linear in ε.

One must also define over which energy grid the integral is to be performed.

The interval averaged collision strength is expected to vary more smoothly than

the distribution function, so the distribution should be tabulated more finely.

The integral is then performed over the distribution function energy grid with

the collision strength interpolated to these points.

The integrals of equations 3.19 and 3.20 are over the range [0,∞) in final
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electron energy and so extrapolation is certainly required to the high-energy limit

and possibly to the low-energy limit, depending on the energy grid. It is common

practice that the results of collision strength calculations come tabulated with

the lowest value being that of the excitation threshold, so extrapolation to the

low-energy limit is usually not of issue. However, for cases where the tabulation

begins above threshold, extrapolation is required; two possibilities are allowed

here. Excitation collision strengths are finite at threshold for electron collision

with an ion and zero with a neutral atom. For extrapolation purposes, a simple

straight line from 0 to the first point is used for collision with a neutral. For ions,

the collision strength is assumed constant from threshold to the first point. This

is safe if the tabulation does not begin too far from threshold.

Extrapolation to infinite energy is more complicated; transition type, as de-

scribed in section 2.1.1, is taken into account. For type 1 transitions (see sec-

tion 2.1.1) there is a logarithmic behaviour of the collision strength at high energy.

This is expressed as,

Ω = a ln (X + b) , (3.32)

where a and b are determined from the last two collision strength tabulations; or

by fitting a straight line in Burgess-Tully space from the last tabulated point to

the infinite-energy limit value. Provided that the tabulation goes high enough in

energy that the collision strength is beginning to follow the logarithmic behaviour

then these approximations are similar. Examination of the collision strength may

suggest that one expression fits the behaviour better that the other; it is left to the

discretion of the modeller. One issue with the choice of fit is that equation 3.32 is

only suitable if the collision strength is increasing with energy, while the Burgess-

Tully fit is always applicable since only the last collision strength point is taken

into account.

For a Maxwellian distribution, the fit of equation 3.32 makes the quadrature

analytically integrable, while the integral is only analytic for the Burgess-Tully fit

if the parameter C is chosen to equal e. However, neither the κ nor Druyvesteyn

distributions can be integrated analytically with these fits. Instead, the trape-

zoidal rule is used from the last energy point over an energy step based on the

energy difference between the last two points, continuing until the contribution

to the integral meets a predefined tolerance. Since the distribution function falls

off faster than the collision strength increases, convergence is met quickly.

Collision strengths of type 2 transitions follow a constant behaviour to infinite

energy. Analogous to the situation with type 1 transitions, extrapolation to

infinite energy is either by a straight line in Burgess-Tully space to the Born
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limit, or by a functional fit of the last two tabulated values. Here, the fit used is,

Ω = a +
b

X
, (3.33)

which is only suitable should the last two values be such that a ≥ 0 and X >

−b/a. For these fits, the Maxwellian distribution is again analytic, but now C

may take any value. Also, the κ and Druyvesteyn distributions must be treated

using the same trapezoidal approach as for type 1 transitions. It is pointed out,

however, that the fit to Ω here is a sum where contribution to the integral from

the first term is indeed analytic; the integral is split, with the first part being

treated analytically and the second using the trapezoidal rule. Convergence in

this case is faster than that of type 1 as both terms of the integrand are decreasing

with energy.

Extrapolation of type 3 transitions does not provide such a significant con-

tribution to the effective collision strength since the collision strength falls off as

1/X2. This behaviour is fitted from the last two values according to,

Ω =
a

(X + b)2 , (3.34)

provided the final collision strength value lies below the previous one.

Extrapolation to both low and high energy in the case of numerical distribu-

tion functions is further complicated by having to consider how the distribution

function behaves in these extremes. The approach here, is to allow various an-

alytic extrapolations of the distribution that are considered to match physical

situations. Should these be unsatisfactory then there is always the possibility of

extending the energy range of tabulation until the distribution becomes negligible

or until one of the analytic representations is approached.

Low-energy behaviour of the distribution function can be represented by,

f(ε) = εp0, (3.35)

where p0 is a parameter chosen at the time of constructing the distribution that

best fits the data. The fit is normalised to the first value of f(ε). Alternatively,

a simple cut-off below the lowest energy tabulation is allowed.

Beyond the ultimate tabulation of f(ε), the distribution may take the follow-
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ing forms:

f(ε) = ε−p1 (3.36)

f(ε) = exp (−p1ε) (3.37)

f(ε) = exp (−p1ε
p2) , (3.38)

where the fitting parameters p1 and p2 are chosen to best fit the high-energy

form of the distribution. The fits are normalised to the last value of f(ε). As

with the low energy behaviour, a cut-off above the last energy point is also al-

lowed. The power-law behaviour of equation 3.36 represents the high-energy

form of the κ distribution, equation 3.37 has the exponential behaviour of the

Maxwellian distribution, and equation 3.38 matches the high-energy behaviour

of the Druyvesteyn distribution.

There are then a number of contributions to the effective collision strength

integrals, of which each are dealt in turn. The energy points as tabulated for

the collision strength are denoted εΩ
i , where 0 < i < m; and for the distribution

function are denoted εf
j , where 0 < j < n.

• Contribution from threshold to first tabulated energy.

The threshold behaviour of both the distribution function and the collision

strength is used, and the integral can take one of a number of forms based

on these representations.

• Contribution from first point in distribution function tabulation to first

point in collision strength tabulation, where εf
0 < εΩ

0 .

In this region, the distribution is fitted to the form of equation 3.30 and the

collision strength fitted with either constant or zero threshold behaviour

depending on the charge state of the ion.

• Contribution from first point in collision strength tabulation to first point

in distribution function tabulation, where εΩ
0 < εf

0 .

Either a linear or quadratic fit to the collision strength is used, and the

distribution function is fitted by equation 3.35. If the low-energy behaviour

of the distribution is to cut off below the first tabulation then there is no

contribution to the integral.

• Contribution from the greater of εΩ
0 and εf

0 to the lesser of εΩ
m and εf

n.
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The collision strength is interpolated either linearly or quadratically to the

distribution function energy grid and the distribution function follows the

fit of equation 3.30.

• Contribution from last point in distribution function tabulation to last point

in collision strength tabulation, where εf
n < εΩ

m.

Here, the distribution function is fitted by one of equations 3.36, 3.37 or

3.38 and the collision strength is again fitted linearly or quadratically.

• Contribution from last point in collision strength tabulation to last point

in distribution function tabulation, where εΩ
m < εf

n.

The distribution function follows equation 3.30 and the collision strength

is extrapolated to the distribution function energy grid using the transition

type definitions of section 2.1.1.

• Contribution from last tabulated point to infinity.

Both the distribution function and the collision strength are extrapolated

to the high-energy region. The collision strength behaviour is determined

by the transition type and the distribution function is then fitted by equa-

tion 3.36, 3.37 or 3.38.

Results for Υ and

Υ

are illustrated for various transitions of neutral helium.

Figure 3.10(a) shows Υ for the 1s2 1S − 1s2s 3S transition, with figure 3.10(b)

showing the equivalent

Υ

. This example has been chosen in illustration of the

effect the exponential factor of equation 3.19 can have on Υ. This particular

transition has a high transition energy, ∆Eij = 19.8 eV. It is seen that, even

for large values of κ, if one goes to low temperatures the exponential dominates

and Υ is several orders of magnitude larger then it would be if convoluted with a

Maxwellian distribution. There is no such factor for the

Υ

expression, and hence

figure 3.10(b) shows no such behaviour at low effective temperature.

Figures 3.12(a) to 3.16(b) show the main features of Υ and

Υ

when the ex-

ponential factor is not dominant. Figures 3.12(a) and 3.12(b) show the dipole

allowed, or type 1, transition 1s2s 3S − 1s2p 3P, again from neutral helium, for

different κ and Druyvesteyn distributions and the Maxwellian distribution. Fig-

ures 3.14(a) and 3.14(b) show the type 2 transition 1s2s 3S − 1s3s 3S, and fig-

ures 3.16(a) and 3.16(b) show the type 3 transition 1s2s 3S − 1s2s 1S. For each

of these transitions, the collision strength used to calculate the effective collision

strengths is also shown as Burgess–Tully plots with the ionisation threshold placed

at 0.5 in reduced energy space (figures 3.2.1, 3.2.1, 3.2.1 and 3.2.1). It should be
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Figure 3.9: Reduced collision strength for the 1s2 1S − 1s2s 3S transition of He0

plotted in Burgess–Tully space with a reduced energy parameter of C = 0.24 to
place the ionisation threshold at 0.5 on the reduced energy scale.

noted that these are in fact averaged collision strengths so do not contain the full

resonance structure of the original data (see section 2.1.1).

The deviation from Maxwellian is as expected. The κ distribution is charac-

terised by an increased population of both low- and high-energy electrons over an

equivalent Maxwellian distribution. This deviation is seen to be carried through

to the effective collision strengths. The contrasting behaviour of the Druyvesteyn

distribution is also observable in the effective collision strengths.

3.2.2 Radiative Recombination

Returning to the radiative recombination, photoionisation and stimulated recom-

bination reactions of section 2.1.3 (equations 2.27, 2.28 and 2.29), one determines

the corresponding non-Maxwellian rate coefficients by considering the Milne re-

lations of equations 2.30 and 2.31 as in the Maxwellian argument. The recombi-

nation coefficient is then obtained as,

α
(r)
i (Teff) =

32α4cπa0
2

3
√

3

z1
4

ν3

∞
∫

0

√

IH

ε

gii

ε/IH + Ii/IH
f(ε) dε. (3.39)
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Figure 3.10: Effective collision strengths for the 1s2 1S − 1s2s 3S transition of
neutral helium. The upper figure shows excitation and the lower de-excitation.
The solid curve shows the result of quadrature with a Maxwellian distribution;
the dotted curve, a κ distribution with κ = 2; the dashed curve, κ = 5; and the
dot-dashed curve, κ = 10.
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Figure 3.11: Reduced collision strength for the 1s2s 3S−1s2p 3P transition of He0

plotted in Burgess–Tully space with a reduced energy parameter of C = 1.29 to
place the ionisation threshold at 0.5 on the reduced energy scale.

For the κ distribution, equation 3.39 becomes,

α
(r),κ
i (Teff) =

32α4cπa0
2

3
√

3

z1
4

ν3

(

IH

κEκ

)3/2
2√
π

Γ(κ + 1)

Γ(κ − 1/2)
∞

∫

0

gii

ε + Ii

(

1 +
ε

κEκ

)−(κ+1)

dε, (3.40)

and for the Druyvesteyn distribution,

α
(r),D
i (Teff) =

32α4cπa0
2

3
√

3

z1
4

ν3

(

IH

κEκ

)3/2

x
Γ(5/2x)3/2

Γ(3/2x)5/2

∞
∫

0

gii

ε + Ii

exp

(

−
[

εΓ(5/2x)

ExΓ(3/2x)

]x)

dε. (3.41)

Evaluation of these integrals requires evaluation of the free-bound Gaunt fac-

tor, gii. A brief overview of gii is given and we discuss the method implemented

here in its calculation. There are, in fact, three Gaunt factors if one uses the

notation of Menzel and Pekeris (1935): the bound-bound Gaunt factor, gi; the

bound-free Gaunt factor, gii, which is of interest here; and the free-free Gaunt

factor, giii. Of relevance here, is the work of Burgess and Summers (1976, 1987).
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Figure 3.12: Effective collision strengths for the dipole allowed 1s2s 3S − 1s2p 3P
transition of neutral helium. The upper figure shows excitation and the lower
de-excitation. The solid curve shows the result of quadrature with a Maxwellian
distribution; the dotted curve, a κ distribution with κ = 2; the long dashed
curve, κ = 5; the dot-dashed curve, a Druyvesteyn distribution with x = 2; and
the short dashed curve, x = 5.
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Figure 3.13: Reduced collision strength for the 1s2s 3S− 1s3s 3S transition of He0

plotted in Burgess–Tully space with a reduced energy parameter of C = 0.64 to
place the ionisation threshold at 0.5 on the reduced energy scale.

It is convenient to introduce some notation before discussing the methods

used to calculate the Gaunt factor. For an ion Az+ with nuclear charge z0, let

z1 = z + 1, and introduce ε, ε′, κ and ν ′ defined as,

ε = κ2 =
ε

z1
2IH

, (3.42)

and

ε′ = − 1

ν ′2
=

ε′

z1
2IH

. (3.43)

Then, in terms of the full level resolution, the free-bound Gaunt factor can be

expressed in terms of quantum numbers S, L and J as,

gii

ii′ =

√
3

π24

(

ε − ε′

z1
2IH

)4
1

ωi
Qii′R

ii

ii′(κ, ν ′). (3.44)

The initial state, γnlSLJ , is denoted i and the final state, γn′l′SL′J ′, by i′. The

angular factor, Qii′ , is given by,

Qii′ = (2J + 1)(2L + 1)(2J ′ + 1)(2L′ + 1)

×
{

L′ 1 L

J S J ′

}2 {

L′ 1 L

l Lp l′

}2

, (3.45)
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Figure 3.14: Effective collision strengths for the dipole forbidden 1s2s 3S−1s3s 3S
transition of neutral helium. The upper figure shows excitation and the lower
de-excitation. The solid curve shows the result of quadrature with a Maxwellian
distribution; the dotted curve, a κ distribution with κ = 2; the long dashed
curve, κ = 5; the dot-dashed curve, a Druyvesteyn distribution with x = 2; and
the short dashed curve, x = 5.
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Figure 3.15: Reduced collision strength for the 1s2s 3S− 1s2s 1S transition of He0

plotted in Burgess–Tully space with a reduced energy parameter of C = 5 to
place the ionisation threshold at 0.5 on the reduced energy scale. It should be
noted that the asymptotic behaviour is not evident until higher values of X than
shown here.

and the radial integral is,

Rii

ii′(κ, ν ′) =
πν ′3

2
|〈κl |ρ| ν ′l′〉|2 . (3.46)

The present treatment of the free-bound Gaunt factor is based on separating

contributions coming from large and small l values and then summing. It is

noted that for large l, the radial integrals are effectively hydrogenic, but at small

l, quantum defects necessitate non-hydrogenic approximations. Calculation of

hydrogenic radial integrals are rapid compared to non-hydrogenic integrals; it

is desirable to perform elaborate non-hydrogenic calculations up to some value

of l and revert to the hydrogenic approximation at higher l. The choice of the

level of sophistication of the non-hydrogenic approximations will depend on the

calculation time available, the level of data and a consideration of the application

of the results.

A fit of the hydrogenic Gaunt factor (note H subscript) was given by Burgess
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Figure 3.16: Effective collision strengths for the spin-changing 1s2s 3S − 1s2s 1S
transition of neutral helium. The upper figure shows excitation and the lower
de-excitation. The solid curve shows the result of quadrature with a Maxwellian
distribution; the dotted curve, a κ distribution with κ = 2; the long dashed
curve, κ = 5; the dot-dashed curve, a Druyvesteyn distribution with x = 2; and
the short dashed curve, x = 5.
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and Summers (1976) as,

gii

H(κ, n′) =

{

1 − 4

3

0.1728(u− 1)

n′2/3(u + 1)2/3
+

[

28

18

(

0.1728(u − 1)

n′2/3(u + 1)2/3

)2

+
4

3

(

0.0496 (u2 + 4u/3 + 1)

n′4/3(u + 1)4/3

)

]}−3/4

, (3.47)

where u = n′2κ2. It is accurate to ∼0.5% to the peak of gii and is approximately

correct for the asymptotic behaviour beyond this. The non-hydrogenic Gaunt

factor is then approximated as,

gii(κ, ν ′) =
∑

l,l′<l0

gii(κl, ν′l′) +
∑

l,l′≥l0

gii

H(κl, n′l′), (3.48)

where the hydrogenic Gaunt factor is used at angular momentum values above

l0.

For a Maxwellian distribution, solution of the radiative recombination coeffi-

cient comes down to the integral of equation 2.32,

∞
∫

Ii/kTe

giie−x

x
dx. (3.49)

This integral is evaluated numerically by 8-point Gaussian quadrature. The ex-

ponential functional form of the integrals is lost when quadrature is with the κ or

Druyvesteyn distributions; the integrals of equations 3.40 and 3.41 are evaluated

using the trapezoidal method over a suitable number of points. Figure 3.17 shows

how the radiative recombination coefficient is affected by differing degrees of de-

viation from Maxwellian form. For this example, recombination to the ground

state of neutral helium, there is an increase in the coefficient for κ distributions

and a decrease for Druyvesteyn distributions.

3.2.3 Dielectronic Recombination

Following from section 2.1.3, the dielectronic recombination process is generalised

to a distribution function, f ,

α
(d)

γ+→i(Teff) = 2IHπ2a0
3
∑

k

ωk

ωγ

IH

Ec

f(Ec)

×
∑

l A
a
k→γ,Ecl

Ar
k→i

∑

h Ar
k→h +

∑

m,l A
a
k→m,Ecl

. (3.50)
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Figure 3.17: The radiative recombination coefficient for κ, Druyvesteyn and
Maxwellian distributions for capture to the ground state of neutral helium. The
curves are generated by numerical quadrature over the free-bound Gaunt factor
and the distribution function. The solid curve denotes the Maxwellian distribu-
tion; the dot-dashed curve, a κ distribution with κ = 1.6; the dotted curve, a κ
distribution with κ = 2; the short dashed curve, a Druyvesteyn distribution with
x = 1.5; and the long dashed curve, a Druyvesteyn distribution with x = 3.
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In general, a summation over a manifold of nearly degenerate states belonging to

a level, term or shell is required, with Ec representing the mean energy for the

resonance manifold.

Since dielectronic recombination is a resonant process, one may use dielec-

tronic recombination coefficient tabulations for Maxwellians as a function of tem-

perature for the non-Maxwellian case by a simple conversion factor at the res-

onance energy. Thus the data following from the work of Badnell et al. (2003)

remain applicable (see section 2.1.3). One first determines the resonance energy,

Ec, from,

α
(d)
γ+→i(Te) = 4π3/2a0

3

(

IH

kTe

)3/2
∑

k

ωk

2ωγ
e−Ec/kTe

×
∑

l A
a
k→γ,Ecl

Ar
k→i

∑

h Ar
k→h +

∑

m,l A
a
k→m,Ecl

, (3.51)

where α
(d)
γ+→i(Te) is the tabulated Maxwellian coefficient, and then converts to

the non-Maxwellian coefficient using the ratio of the non-Maxwellian distribution

at this energy to the Maxwellian distribution at the same effective temperature.

The conversion factor is thus,

√
πIH

2

(

kTe

IH

)3/2 √

IH

Ec
eEc/kTef(Ec). (3.52)

The above method assumes the Maxwellian dielectronic recombination data

to have a single resonance corresponding to each n-shell and hence a precise

energy of formation. This can be an oversimplification, however, as essentially,

the dielectronic recombination coefficient can often display a second with the

same outer-electron n-shell (for example, with both ∆n = 0 and ∆n = 1 parent

transitions). Some account is taken of this by using

α
(d)
γ+→i(Te) ≈ (kTe)

−3/2e−Ec/kTe (3.53)

to deduce the local mean resonance energy in every tabular interval. There re-

mains a problem when the effective temperature being considered lies in between

two resonances where the functional form of equation 3.53 does not fit either of

the resonances. In practice, this fit will return a resonant energy somewhere be-

tween the two actual resonances, which is desirable, although a proper treatment

would consider the contributions from each resonance individually.

Further error is introduced by this procedure due to outer electron stabilisa-
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tion. There are some points to be noted. The large scale production of Maxwell

averaged rate coefficients in the DR Project (Badnell et al. 2003) delivers data,

according to a format (adf09) specified in the ADAS Project (Summers, 1993,

2004), separated according to different n-n′ sets of parent transition arrays. Thus,

conversion to non-Maxwellian of such tabulations limits resonance energy uncer-

tainty to within an n-n′ parent transition array. Parent ∆n > 0 transition arrays

give dielectronic population of lower levels, but in this case the resonant en-

ergy uncertainty is low. Parent ∆n = 0 transition arrays populate high n-shells

via dielectronic recombination with dipole dominance and predominantly outer-

electron stabilisation. So again the error of non-Maxwellian conversion is limited.

For the present work, therefore, two strategies are adopted. The simple con-

version (of each parent n-n′ set) is done for light element ions, for which n-shell

separations are, in general, large, following equation 3.52. This is the case for the

helium illustrations which follow. For ions of heavier elements, which can have

parent ground states with n > 2 configurations, the use of a support function,

as introduced in section 2.1, is preferred. The Burgess–Bethe support function

(BBGP), detailed in Badnell et al. (2003), is used. Studies indicate that this

support function can represent nl-shell resolved, n-shell total and total zero-

density dielectronic recombination coefficients to very high precision, depending

on the completeness of the Bethe correction factors and the inclusion of non-

dipole threshold collision strengths. BBGP handles alternative Auger channels

correctly. A machinery has been established (Badnell et al. 2003) for the system-

atic preparation of the simple driver data for the BBGP support function in the

general case. Since BBGP supplies the components of equation 3.51 (summed

over outer quantum numbers within an nl-shell of the captured electron), it con-

verts to non-Maxwellian directly. It is the preferred policy to form a ratio of

the summed BBGP approximations over all levels at the effective temperature

in Maxwellian approximation to that of the total zero-density value from the

DR Project. This factor is then a multiplier on the level resolved BBGP non-

Maxwellian coefficients. The BBGP support function has been used to extend

GCR modelling to very high density by allowing inclusion of doubly-excited pop-

ulation redistribution (see also Summers et al. 2005). It can be used similarly

in the non-Maxwellian case, although it is noted that an ion impact is the pri-

mary collisional redistribution mechanism within an n-shell of the doubly-excited

system. Non-Maxwellian ion distributions are outside the scope of this thesis.

Figure 3.18 shows the dielectronic recombination coefficient for capture to the

final 1s2s 1S state of neutral helium. For a given resonance, at low and high tem-
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Figure 3.18: The dielectronic recombination coefficient for κ, Druyvesteyn and
Maxwellian distributions for capture to the 1s2s 1S state of neutral helium. The
solid curve denotes the Maxwellian distribution; the dotted curve, a κ distribution
with κ = 2; and the dashed curve, a Druyvesteyn distribution with x = 2.

peratures, the effect of dielectronic recombination is reduced for a Druyvesteyn

distribution in comparison to a Maxwellian, and increased for a κ distribution.

At intermediate temperatures, the opposite result is found. This is as expected

from the form of the distribution functions. It is interesting to note that, for the

example of figure 3.18, this intermediate region falls at the peak contribution of

dielectronic recombination, so the primary effect of a non-Maxwellian distribution

on dielectronic recombination may not be intuitive from the type of distribution.

A further point of note, is that at low temperatures, it is the high-energy tail

of the distribution function which contributes to the dielectronic rate coefficient,

while at high temperatures, the low-energy region of the distribution contributes.

3.2.4 Collisional Ionisation and Three-Body Recombina-

tion

As discussed in section 2.1.3, three-body recombination is the inverse process of

collisional ionisation, it is therefore advantageous to discuss them together. For

a Maxwellian plasma, the three-body recombination rate is determined from the

collisional ionisation rate, via equation 2.26, so no explicit formulation of the

three-body recombination coefficient is necessary. The relation of equation 2.26

80



is not valid for a non-Maxwellian plasma so coefficients describing each reaction

separately are required.

Some terminology must first be introduced in reference to reactions 2.18

and 2.25. The double differential cross-sections (in energy) are denoted by

Qi→γ+(ε; ε′, ε′′), for ionisation, and Qγ+→i(ε
′, ε′′; ε), for recombination, with ε the

incident electron energy, ε′ the scattered incident electron energy, and ε′′ the

ejected electron energy. Conservation of energy,

ε = ε′ + ε′′ + Ii, (3.54)

dictates that both Qi→γ+(ε; ε′, ε′′) and Qγ+→i(ε
′, ε′′; ε) contain the delta function,

δ(ε − ε′ − ε′′ − Ii), (3.55)

as a factor. The Fowler relation for these cross-sections in terms of the statistical

weights of the initial and final states of the ion is,

ωiεQi→γ+ (ε; ε′, ε′′) =
16πm

h3
ωγε

′ε′′Qγ+→i (ε
′, ε′′; ε) . (3.56)

The rate coefficients are then given by integrating the corresponding cross-

sections with the electron distribution functions. The ionisation rate coefficient

is,

qi→γ+ =

∫ ∞

Ii

∫ ε−Ii

0

∫ ε−ε′−Ii

0

√

2ε

m
Qi→γ+ (ε; ε′, ε′′) f(ε) dε′′ dε′ dε, (3.57)

and the three-body recombination coefficient,

α
(3)

γ+→i =

∫ ∞

Ii

∫ ε−Ii

0

∫ ε−ε′−Ii

0

Qγ+→i (ε
′, ε′′; ε)

√

2ε′

m
f(ε′)

×
√

2ε′′

m
f(ε′′) dε′′ dε′ dε.

(3.58)

It is convenient to write the latter in terms of the ionisation cross-section. Using

the Fowler relation (equation 3.56), and introducing the effective temperature,
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the three-body recombination coefficient can be expressed as,

α
(3)

γ+→i(Teff) = 8

(

πa0
2IH

kTeff

)3/2
ωi

2ωγ

eIi/kTeff

×
∫ ∞

Ii

∫ ε−Ii

0

∫ ε−ε′−Ii

0

√

2ε

m
Qi→γ+ (ε; ε′, ε′′) f(ε)

×
[√

π

2
(kTeff)3/2e−Ii/kTeff

√

ε

ε′ε′′
f(ε′)f(ε′′)

f(ε)

]

dε′′dε′dε.(3.59)

As the distribution tends to a Maxwellian, Teff → Te, the term in square brackets

tends to unity.

Using an analytic form of the differential cross-section, such as that due

to Thomson (1912), can give simplified approximate results for the Maxwellian

rate coefficients. The differential form of the Thomson cross-section (c.f. equa-

tion 2.21) is,

Qi→γ+ (ε; ε′, ε′′) = 4πa0
2ζIH

2 1

εε′2
δ(ε − ε′ − ε′′ − Ii). (3.60)

In the Maxwellian case,

qi→γ+(Te) = 8
√

παca0
2ζ

IH

Ii

IH

kTe

e−Ii/kTe

[

1 − Ii

kTe

eIi/kTeE1(Ii/kTe)

]

, (3.61)

and

α
(3)

γ+→i(Te) = 8

(

πa0
2IH

kTe

)3/2
ωi

2ωγ

eIi/kTeffqi→γ+(Te), (3.62)

where E1 is the first exponential integral.

Even for the relatively simple Thomson representation of the cross-section,

analytic solutions to equations 3.57 and 3.59 do not exist for κ and Druyvesteyn

distributions. In any case, one would generally like to implement more accurate

approximations for the cross-section, so numerical quadrature is necessary even

in the case of Maxwellian distributions. It is generally the case that double differ-

ential cross-sections are not available, the total cross-section being the quantity

usually measured or calculated. The total cross-section for collisional ionisation,

σi→γ+(ε), is related to the double differential cross-section by,

σi→γ+(ε) =

∫∫

Qi→γ+ (ε; ε′, ε′′) dε′ dε′′. (3.63)

However, the triple integral of equation 3.59 has a dependency on ε′ and ε′′

outwith Qi→γ+ (ε; ε′, ε′′), unlike equation 3.57, so equation 3.63 cannot be applied.
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Figure 3.19: Collisional ionisation rate coefficient from 1s2p 3P of neutral helium
for various electron distribution functions. The solid curve shows a Maxwellian
distribution; the long dashed curve, a κ distribution with κ = 2; the short dashed
curve, a κ distribution with κ = 5; the dotted curve, a Druyvesteyn distribution
with x = 2; and the dash-dotted curve, a Druyvesteyn distribution with x = 5.

For non-Maxwellian plasmas, α
(3)

γ+→i(Teff) cannot be determined from qi→γ+(Teff)

as in the Maxwellian case (equation 3.62); a simplifying assumption must then

be made if only total cross-sections are available. The method used here is to

perform the integrals with respect to ε′ and ε′′ using the Thomson differential

cross-section, and introduce an ε-dependent correction factor,

g(ε) = σi→γ+(ε)/σThomson
i→γ+ (ε), (3.64)

in the final integral over ε.

Similar arguments to those related to the excitation and de-excitation rates

(section 3.2.1) follow for the quadratures here. Figure 3.19 shows the collisional

ionisation rate coefficient from the 1s2p3P state of neutral helium, and figure 3.20

shows the equivalent three-body recombination rate coefficient.
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Figure 3.20: Three-body recombination rate coefficient to 1s2p 3P of neutral
helium for various electron distribution functions. The quadrature is performed
using a correction factor based on the Thomson cross-section. The solid curve
shows a Maxwellian distribution; the long dashed curve, a κ distribution with
κ = 2; the short dashed curve, a κ distribution with κ = 5; the dotted curve, a
Druyvesteyn distribution with x = 2; and the dot-dashed curve, a Druyvesteyn
distribution with x = 5.
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Chapter 4

Diagnostic Application

4.1 Methodology

The non-Maxwellian rate coefficients, as defined and calculated in section 3.2,

may show deviation from their Maxwellian counterparts, but in order to analyse

how the non-Maxwellian nature of the free electron distribution will affect the

spectroscopically observable features of a plasma, one must utilise the rate coeffi-

cients within the GCR context of section 2.2. It is, thus, necessary to compute not

only the equilibrium level populations, but also the effective coefficients for line

emission, ionisation and recombination ‘driven’ by the various metastables of the

different ionisation stages of an element. These effective coefficients are functions

of electron temperature, Te, and electron density, Ne, in the Maxwellian case, ex-

tending to a further dependence on a non-Maxwellian parameter (see section 3.1)

in the present case.

From the discussions of chapter 2 it is noted that GCR modelling of a fi-

nite density plasma requires attention to very highly-excited states. This is of

particular importance when dielectronic recombination is present due to the com-

bined effect of stabilisation onto many such states. Modern calculations (Badnell

et al. 2003) consider states with principal quantum number as high as 1000.

Computationally, a collisional-radiative treatment of all levels as fully resolved

is unattainable and not justified physically; the approach taken here is to define

some critical principal quantum shell, nc, and treat the levels either side of nc

separately and differently. Adequate modelling requires nc to be high enough that

all observed spectral lines are included in the lower lying levels, while diagnostic

spectroscopy demands high precision rate coefficients for these transitions. The

higher lying levels, those above nc, require less precision in their rate coefficients

and lower substate resolution and can be approximated as being in quasi-static
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equilibrium with respect to the low level group in the collisional-radiative sense.

High quality cross-section data, as calculated by the methods of section 2.1,

is held for the low-level group and the techniques of section 3.2 are used to cre-

ate the appropriate non-Maxwellian rate coefficients. The high levels are treated

using simpler analytic approximations for the various rate coefficients. The in-

fluence of these highly excited populations on the low levels is computed by the

method of condensation and projection matrices (Summers et al. 2005). The

high-level projection is thus approximated using a Maxwellian treatment at the

effective temperature of the non-Maxwellian distribution used for the low lev-

els. This simplification allows an economical focus on the primary effects of the

non-Maxwellian distribution on spectral emission while retaining the GCR com-

pleteness, with only a small reduction in precision, but with the most substantial

error for dielectronic recombination. This is because the summation over the

high levels is a main contribution to the overall GCR effective recombination

coefficient. State selective dielectronic recombination for the high levels in the

non-Maxwellian case is allowed for by using the same conversion factor technique

as for the low levels.

4.2 Computational Implementation

The mathematical description of non-Maxwellian rate coefficient calculations is

outlined in detail in section 3.2, but it is useful to describe the implementation of

these methods computationally. Figure 4.1 shows a schematic representation of

the files and codes involved, the work being performed within the context of the

ADAS project (Atomic Data and Analysis Structure; Summers, 1993, 2004).

The first stage of the modelling is to define the free-electron distribution func-

tion. As described in section 3.1.1, it is often the case that the distribution can be

represented by an analytic formalism described by a non-Maxwellian parameter;

allowed here, are the κ and Druyvesteyn distributions. Selection of such a distri-

bution is simple, with an effective temperature and a value of the non-Maxwellian

parameter (the κ of equation 3.4 or the x of equation 3.7) all that is required.

Should either of these analytic representations be inappropriate, and a nu-

merically tabulated distribution function thus required, definition is less simple.

Creation of the distribution function is the first requirement. Section 3.1.2 de-

scribes distribution functions as generated by Fokker-Planck and PIC codes, al-

though the present work is by no means limited to such codes. Experimental

measurements of distribution functions or analytic representations not covered
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Figure 4.1: Flow chart showing the steps used to create distribution-averaged col-
lision strengths and the subsequent calculations to produce the final populations,
emissivities and GCR coefficients.
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here can be tabulated and used as input to the processing. Methods of arriving

at the distribution function lie outside the scope of ADAS, the file containing

the tabulated distribution being the first level of involvement in terms of ADAS

specification. The specific organisation of the distribution function files, assigned

the ADAS format adf37, as well as the other file types mentioned here, can be

found in Summers (2004).

Appertaining to the fundamental atomic data, the adf04 data format has

been used for many years in the ADAS project and has become one of the com-

mon formats for delivery of the results of fundamental electron-ion collision and

atomic structure calculations. Prior to the present development, virtually all

adf04 files composed of Maxwell-averaged rate coefficients (held as Υ) given the

sub-categorisation of type 3. These files cannot be applied to the non-Maxwellian

case (see section 3.2.1), and the new type 1 version is introduced, composed of

cross-sections (held as collision strength, Ω). The latter are generally interval

averaged (see Paton, 2005) for compactness (bearing in mind the arguments of

section 2.1.1 concerning acceptability of scale length) but are unaveraged over

a distribution function. R-matrix and associated structure codes (in particu-

lar, autostructure Badnell, 1986; Badnell and Pindzola, 1989; Badnell, 1997)

are indicated as RMATRX in figure 4.1. Griffin et al. (1998) prepared a post-

processing code, ADASEX, which assembled raw R-matrix outputs, executed

Maxwell averaging and delivered a fully formed adf04 – type 3 data set. ADA-

SEX has been extended, with inclusion of interval averaging, so as to deliver an

adf04 – type 1 data set. The collisional data in this file type includes only electron

impact excitation and ionisation.

The code ADAS809 converts from collision strengths, as held in adf04 – type 1

files, to distribution-averaged collision strengths; section 3.2.1 describes the de-

tail behind this. The common adf04 – type 3 file type remains if the collision

strength is averaged over a Maxwellian distribution, and a further class of adf04

is introduced for non-Maxwell averaging, namely type 4. The organisation of

type 4 files adheres closely to that of type 3 but must take account of the asym-

metry introduced by the non-Maxwellian distribution; whereas type 3 files hold

the Maxwell-averaged Υ, type 4 files contain both Υ and

Υ

of the non-Maxwellian

distribution. The specific analytic κ and Druyvesteyn families are internally gen-

erated within ADAS809, while true numerical distribution function families and

superposition families are supplied in the data format adf37. ADAS809 will also

convert from ionisation cross-sections to rate coefficients (see section 3.2.4); the

ionisation data being held in adf04 files in a similar manner to the excitation
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data. Analogous to the separate parameters for excitation and de-excitation,

there is a requirement for both ionisation and 3-body recombination reaction

rate coefficients as one cannot be derived from the other in the non-Maxwellian

case.

Additional collisional reactions must be added to the adf04 file for complete

GCR modelling. Extensions to existing codes ADAS211 and ADAS212 facil-

itate the inclusion of radiative recombination and dielectronic recombination.

Quadratures over the free-bound Gaunt factor are performed within ADAS211

as described in section 3.2.2, and the conversion from Maxwellian dielectronic

recombination to the non-Maxwellian equivalent via the methods of section 3.2.3

are performed within ADAS212. These rate coefficients are added to the existing

adf04 file to give a full type 4 file for the ion in question.

Organisation of the adf04 – type 4 file is such that each file contains data of

a single ion for a single distribution function. Multiple runs using an assembly

of adf04 files is the usual procedure when investigating the influence of the de-

gree of deviation from Maxwellian. Results of such an analysis can be found in

section 4.3.

Generation of population structure, effective ionisation and recombination co-

efficients and line emissivities is carried out using ADAS208, with the procedures

detailed in Summers et al. (2005). This code has been extended to recognise and

pair the excitation/de-excitation and ionisation/recombination transitions from

the adf04 – type 4 data sets and process them as required. The influence of

very high levels (above nc) is included by ADAS208 accessing preprepared pro-

jection matrices of ADAS format adf17. These matrices are the product of a

separate collisional-radiative population calculation designed for many n-shells

(called ADAS204) in the ADAS project. The projection matrices used here in-

clude the non-Maxwellian dielectronic recombination adjustment. The remainder

of this chapter will discuss how such derived data can be used to diagnose non-

Maxwellian plasmas.

4.3 Illustrative Results

Before application to actual experimental observations is performed, an investiga-

tion into the general use of non-Maxwellian distributions in predictive modelling

and deductive spectral analysis is presented. For illustrative purposes, neutral

helium is chosen to highlight the general principles, following from the rate coef-

ficients generated in section 3.2.
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Since the first order effect of a non-Maxwellian parameter is a mean energy

shift, separation of a non-Maxwellian parameter from the effective temperature is

expected to prove problematical when measuring line emission. This weak orthog-

onality is countered by the differential variation of dipole, non-dipole and spin

change collision strengths with energy, and, as pointed out in section 3.2.1, the

variation of the excitation and de-excitation rate coefficients with non-Maxwellian

parameter is not proportional to the effective temperature. Figures 4.2(a) and

4.2(b) show the excited populations of neutral helium at an electron density of

1012 cm−3. The differential variation of the collision strengths with energy is seen

at this electron density in the relative populations of the terms. At the effective

temperature of 3 eV, the fractional populations of some terms are increased and

some decreased. This implies that some insight may be gained by the observation

of transitions between these levels. Ratios of line intensities are thus examined

as a function of non-Maxwellian parameter.

Diagnoses of electron density and temperature from a Maxwellian plasma from

neutral helium use measurements of ratios of strong emission lines. Density is

deduced from a measurement of a ratio of singlet to singlet transitions, generally

(1s2p 1P−1s3d 1D)/(1s2p 1P−1s3s 1S) or (1s2p 1P−1s3d 1D)/(1s2s 1S−1s3p 1P).

These line ratios are considered a measure of the electron density due to collisional

redistribution of the l-shell populations. Temperature is deduced from (1s2p 1P−
1s3s1S)/(1s2p3P−1s3s3S) or (1s2s1S−1s3p1P)/(1s2s3S−1s3p3P). The singlet to

singlet transition has an effective collision strength that tends to a constant with

high-temperature, while the spin changing transition has an effective collision

strength that reduces with temperature. This differential variation allows the

ratio of these lines to be used a measure of electron temperature.

A similar technique is sought in which a non-Maxwellian parameter can be

determined from a measurement of line ratios. For the κ distribution family,

the following line ratios are examined: (1s2p 1P − 1s3s 1S)/(1s2s 1S − 1s3p 1P)

and (1s2p 3P − 1s3d 3D)/(1s2s 1S − 1s3p 1P). Figures 4.3(a) and 4.3(b) show,

for a fixed electron density of 1012 cm−3, contour plots of the line ratios as a

function of effective electron temperature and κ. This is merely a demonstration

of principle, and falls short of establishing a working diagnostic methodology for

non-Maxwellians. The primary difficulty is that some insight into the distribution

form is required before such an analysis can be fruitful.

The effect of the non-Maxwellian parameter on the collisional-radiative ioni-

sation and recombination coefficients (see section 2.2) is shown in figures 4.4, 4.5,

4.6 and 4.7.
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Figure 4.2: Variation of neutral helium populations with electron temperature
and κ. Note that, at an electron temperature of 3 eV, some fractional populations
are increased and some decreased. At the fixed electron density of 1012cm−3, there
is only partial redistribution amongst the n = 3 l-substates.
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Figure 4.3: Neutral helium line ratios as a function of electron temperature and κ
at a fixed electron density of 1012 cm−3. (a) (1s2s3S−1s3p3P)/(1s2s1S−1s3p1P).
(b) (1s2p3P−1s3d3D)/(1s2s1S−1s3p1P). The difference between the two surfaces
indicate that Teff and κ may be extracted from line ratio observations, although
insight into the appropriate non-Maxwellian family is required.
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Figure 4.4: GCR ionisation coefficient for neutral helium at an electron den-
sity of 109 cm−3 as a function of non-Maxwellian parameter and electron tem-
perature. The dotted line along the temperature axis indicates the Maxwellian,
with Druyvesteyn and κ distributions deviating further from Maxwellian on mov-
ing away from this line. The Druyvesteyn distribution ranges from x = 1 at
the Maxwellian to x = 5, and the κ distribution ranges from κ → ∞ at the
Maxwellian to κ = 1.6.
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Figure 4.5: GCR ionisation coefficient for neutral helium at an electron tempera-
ture of 106K as a function of non-Maxwellian parameter and electron density. The
dotted line along the density axis indicates the Maxwellian, with Druyvesteyn and
κ distributions deviating further from Maxwellian on moving away from this line.
The Druyvesteyn distribution ranges from x = 1 at the Maxwellian to x = 5, and
the κ distribution ranges from κ → ∞ at the Maxwellian to κ = 1.6.
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Figure 4.6: GCR recombination coefficient for neutral helium at an electron den-
sity of 109 cm−3 as a function of non-Maxwellian parameter and electron tem-
perature. The dotted line along the temperature axis indicates the Maxwellian,
with Druyvesteyn and κ distributions deviating further from Maxwellian on mov-
ing away from this line. The Druyvesteyn distribution ranges from x = 1 at
the Maxwellian to x = 5, and the κ distribution ranges from κ → ∞ at the
Maxwellian to κ = 1.6.
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Figure 4.7: GCR recombination coefficient for neutral helium at an electron tem-
perature of 106K as a function of non-Maxwellian parameter and electron density.
The dotted line along the density axis indicates the Maxwellian, with Druyvesteyn
and κ distributions deviating further from Maxwellian on moving away from this
line. The Druyvesteyn distribution ranges from x = 1 at the Maxwellian to x = 5,
and the κ distribution ranges from κ → ∞ at the Maxwellian to κ = 1.6.
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The ionisation balance is sensitive to temperature and κ (as pointed out by

Doyle et al. 2003), however, so unambiguous detection from ionisation state alone

is particularly difficult. In addition to this, it is generally the case that electron

impact ionisation coefficients are less accurate than excitation rate coefficients.
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Chapter 5

Conclusions and Future Work

The effects of the free-electron energy distribution on the spectral emission of

plasmas has been addressed, with consideration of the distribution functions and

fundamental collisional cross-sections through to the observable line intensities.

The introduction of ‘families’ of distribution function (section 3.1) is an impor-

tant concept in the diagnostic measurement of the non-Maxwellian character of a

plasma. Figure 4.3 demonstrates that, by a measurement of line intensity ratios,

a non-Maxwellian parameter can be discerned. Analysis of this kind, however,

requires some prior insight into the nature of the distribution.

The vast majority of atomic modelling of plasmas considers only free-electrons

of Maxwellian form, and atomic data have reflected this. For instance, electron-

impact excitation data are usually provided in the form of Maxwell-averaged colli-

sion strengths, rather than the more general cross-sections (or collision strengths)

which are required to produce non-Maxwellian reaction rates. This was thought

necessary when disc space for storage was an issue and the large volume of cross-

section data could be reduced in size by averaging over a Maxwellian distribution.

This argument is less valid today, with the cost of computer storage rapidly de-

creasing. A further consequence of the tabulation of Maxwell-averaged collision

strengths over cross-sections is that the data are not open to the same level of

scrutiny; non-physical characteristics, such as the oscillations produced by the

RMPS method (see figure 2.1), are lost to the smoothing process. Whatever

the reason for the lack of tabulation of cross-sections in their elemental form,

a proper examination of non-Maxwellian plasmas is only possible through their

consideration.

These fundamental atomic data on electron-impact reactions demand atten-

tion; it is important that the data properly represent the resonant nature of the

excitation, excitation-autoionisation and dielectronic recombination reactions. It
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is demonstrated in figure 2.5 that a reduced tabulation of the excitation cross-

section, which smooths through the resonance region, can be unsafe when quadra-

ture of the cross-section with the electron distribution function is performed.

While the reduced dataset is found to be compatible with quadrature over a

Maxwellian, this is not so in the case of a κ distribution of equivalent effective

temperature.

Following from these considerations, the thesis provides a complete framework

for atomic modelling of non-Maxwellian plasmas from the fundamental electron-

impact cross-section data to final spectral characteristics through a unified gen-

eralised collisional-radiative picture. The methods and computational implemen-

tation are general and suitable for any ion. The product of the computation

is derived emission and GCR data appropriate both for plasma modelling and

spectral analysis.

Perhaps the main reason for a lack of non-Maxwellian modelling of plasmas

heretofore, is the difficulty in determining, unambiguously, the effects consequent

of the electron distribution. Section 2.3 presents the results of an investigation

into the spectral emission from dynamic regions of the solar atmosphere. It

has been postulated (Doyle et al. 2003) that discrepant line intensities from UV

explosive events can be the result of non-Maxwellian electron distributions. Sec-

tion 2.3.2, however, demonstrates that the discrepancy between emission from

Li- and Be-like ions can also be explained by consideration of the density depen-

dence of the ionisation fractional abundance. It is clear that, particularly in the

non-intrusive environment of astrophysics, it is not always possible to determine

whether effects attributed to a non-Maxwellian distribution of free-electrons could

not also have some other cause.

Nonetheless, taking the case of neutral helium as an example, and from a

theoretical perspective, in section 4.3 of this thesis, it has been demonstrated that

there is potential for the separation of effective temperature and non-Maxwellian

parameter by the measurement of emission line ratios.

Application to actual experimental observations is beyond the scope of the

thesis, but is the subject of planned future work. In the fusion regime, non-

Maxwellian electrons occur in the core plasma as energised high-energy tails.

More importantly for ITER (International Thermonuclear Experimental Reac-

tor) and current large scale fusion machines is the expectation of non-Maxwellian

behaviour in the divertor region. The output of this thesis is tuned for incorpo-

ration in the primary 1- and 2-dimensional transport models used for description

of divertor and scrape-off-layers of tokamaks. Discrepancies between Langmuir
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probe and spectral inferences of electron and ion temperature are expected to be

the observable non-Maxwellian consequences.

As discussed earlier, spectral emission suggestive of non-Maxwellian behaviour

is found in low-pressure arc and radio-frequency discharges in helium and in line

ratios of helium observed from the solar atmosphere. These observations were one

reason for using helium as a main vehicle for illustration in the non-Maxwellian

GCR development. Both types of plasma have added complexity. The spectral

emission by the laboratory discharges in helium are markedly influenced by the

1s2s 3S metastable population largely uncoupled from the ground population in

the plasma. This additional free parameter makes the establishment of the non-

Maxwellian character subtle. The derived data and models from this thesis are

in use at Augsburg University in exploration of these effects.

Helium line formation and line ratios in the solar atmosphere are strongly

affected by optical thickness in the resonance lines. This is a complex addition and

necessitates incorporation of the non-Maxwellian effects in a multi-level radiative

transfer and population model. Also, it might be expected that deviations from

Maxwellian would decrease with increasing density at the deeper layers of the

atmosphere. This is an important case for analysis using the methods and data

of the thesis in light of the earlier studies of Smith (2003). Work is in progress

on the solar atmosphere modelling in collaboration with Catania University and

Observatory.
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Dzifčáková E and Kulinová A 2003 Solar Phys. 218 41

Falk R A, Stefani G, Camilloni R, Dunn G H, Phaneuf R A, Gregory D C and

Crandall D H 1983 Phys. Rev. A 28 91

Fisch N J 1978 Phys. Rev. Lett. 41 873

Fisch N J and Boozer A H 1980 Phys. REv. Lett. 45 720

Fogle M, Eklow N, Lindroth E, Mohamed T, Schuch R anf Tokman M 2003 J.

Phys. B: At. Mol. Opt. Phys. 36 2563

Goett S J and Sampson D H 1983 Atomic Data and Nucl. Data Tables 29 535

Gorczyca T W and Badnell N R 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3897

Gu M F 2003 Astrophys. J. 582 1241

Gudmundsson J T 2001 Plasma Sources Sci. Technol. 10 76

104



Gudmundsson J T, Kimura T and Leiberman M A 1999 Plasma Sources Sci.

Technol. 8 22

Gudmundsson J T, Marakhtanov A M Patel K K, Gopinath V P and Leiberman

M A 2000 J. Phys. D: Appl. Phys. 33 1323

Griffin D C, Badnell N R and Pindzola M S 1998 J. Phys. B: At. Mol. Opt. Phys.

31 3713

Gringauz K I and Verigin M I 1990 Comet Halley: Investigations, Results, In-

terpretations. Vol. 1 - Organization, Plasma, Gas. ed. Mason J W (New Jersey:

Ellis Horwood/Prentice-Hall) p. 147
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