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Abstract

This thesis presents a study of escape probability and absorption factor techniques
for describing the effects of opacity on atomic population structure and emergent spec-
tral line intensities in the context of solar atmospheric plasmas. These techniques are
presented and used in conjunction with data from the SUMER spectrometer onboard
the SOHO spacecraft from which values of optical depth are directly extracted. From
these, spectral lines of C 11 and C 111 are classified according to their disk centre and
limb optical depths and also according to the influence of opacity on the upper level
population density of each line.

Escape probability quantities are then used with the SUMER data to assess the
applicability of simple stratified atmosphere models in describing spectral emission
from the highly inhomogeneous solar transition region.

Following this, the assumptions underpinning the escape probability and absorp-
tion factor methods are comprehensively addressed to test the validity of the escape
probability expressions and to develop them for use within non-stratified models which
include plasma flow and line blending. It is found that for moderate optical depths
(To <~ 10) the escape probability is an effective tool for accurately describing the
effect of opacity on emergent spectral line intensities. Furthermore it is found that
they may be used to extract optical depths directly from observational data indepen-
dently of preconceived atmosphere model ideas. The analysis enables the detection
of unresolved spicule-like structures at the solar limb.

Stratified models are re-addressed with the inclusion of line blending and instru-
mentally scattered light and it is found that they can be effective in predicting ob-

served spectral emission at the solar limb.
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Chapter 1
Introduction

The sun has been an object of scientific interest since the time of the ancient Greeks
and an object of wonder since long before then. It is the centre piece of the solar
system and its varied and powerful characteristics impinge markedly on life on earth,
making detailed study of its processes both a useful and important effort. The earth
exists in a delicate balance with a sensitive dependence on the behaviour of the sun.
Any closer and it would be too hot for life. Any further away and it would be too
cold. Long term solar cycles produce global warming and ice ages and planets that
lack a protective magnetosphere have their atmospheres stripped away by the solar
wind. This process is underway on Venus which has a solar wind induced comet-like
tail that stretches as far as earth. On smaller timescales, coronal mass ejections, when
oriented appropriately, are capable of simultaneously producing the beautiful aurorae
and destroying satellites and power grids.

In these days when the depletion of fossil fuels and atmospheric pollution are
critical issues and the potential of renewable energy sources is of key interest, the
sun is an obvious choice of generator providing, for all practical purposes, limitless
energy. The effective harnessing of such energy will benefit greatly from an increased
understanding of the sun. Solar physics research also presents an opportunity to
study a naturally magnetically confined plasma environment. It therefore provides
useful knowledge and insight for the development of magnetically confined laboratory

fusion plasmas, which are being developed around the world as abundant sources of



power.

The sun is a fairly average star and its proximity to the earth allows it to be
resolved into subregions — other stars can only be seen as single objects. Consequently
study of the sun provides much information pertinent to stellar physics.

The sun is an extremely diverse and dynamic creature which poses a whole host
of rich physical questions and only the basics of solar physics are understood to any
depth. The Solar and Heliospheric Observatory (SOHO - Domingo et al., 1995) is a
joint NASA (National Aeronautics and Space Administration) and ESA (European
Space Agency) spacecraft situated in orbit round the sun-earth L1-Lagrange point
— the point where the gravitational force due to the sun is balanced by that of the
earth. It has a payload of twelve instruments designed collectively to address three

of the main unanswered questions in solar physics. Namely,

1. What is the detailed structure of the solar interior?
2. How is the solar corona heated?

3. How is the solar wind accelerated?

To address the question of coronal heating, SOHO carries six solar atmosphere
remote sensing instruments, one of which is the Solar Ultraviolet Measurements of
Emitted Radiation (SUMER) spectrometer (Wilhelm et al., 1995), data from which
is discussed here.

Fig. 1.1 shows a model of the temperature structure of the solar atmosphere. The
photosphere (heights < 0 km) is relatively dense and cool (~ 6000K). Above the
photosphere is a narrow layer called the chromosphere which spans a temperature
range from the temperature minimum of ~ 4,000 K just above the photosphere, up
to ~ 20,000 K at ~ 2000km. Between the chromosphere and the corona a transition
region of uncertain structure exists which spans the region ~ 20,000 — ~ 2,000,000K.
Above the transition region is the corona which extends to many solar radii at a
temperature of ~ 2,000,000K.

The images shown in figs 1.2, 1.3 and 1.4 give some indication of the dynamic

nature of the solar atmosphere. If the dynamics are to be understood it is necessary
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Figure 1.1: The variation in temperature with height in the solar atmosphere up to the transition

region based on the hydrostatic equilibrium model of Vernazza et al. (1981). (Taken from Phillips,
1992).

to first probe the atmospheric and temperature structures of the quiet sun — i.e. the
non-active sun — though, as the recent SOHO data bears testimony, even the quiet sun
is dynamic on timescales less than that of ionisation equilibrium (Brooks et al., 1998).
This thesis seeks to develop methods useful for both the diagnosis and modelling of

plasma structure from observations of optically thick spectra.

1.1 The solar chromosphere and transition region

The regions of the solar atmosphere which are of particular interest in this work are the
chromosphere and the transition region (TR). The solar chromosphere is a narrow part
of the solar atmosphere visible during an eclipse or with special observing techniques.
Its main characteristics are a rise in temperature with height and a complex dynamic
structure. Ha and calcium H and K line spectroheliograms (eg. fig 1.2) of the sun

show that the chromosphere is a highly non-uniform, structured region of the solar



Figure 1.2: Image of the solar disk in hydrogen Ha at 6563 A revealing the lower chromosphere.
Several active regions are evident as well as many prominence filaments (see sec. 1.1.2). A number
of prominences are visible at the limb.



atmosphere. In fig. 1.2 large bright zones called active regions are visible with bright
patches in their vicinity known as plages. Evident also are long, dark structures called
filaments (see sec. 1.1.2).

Fig. 1.3 shows the solar disk as seen in He 11 304 A which corresponds to a
temperature of around 80,000 K. In this figure bright clumps that form a pattern can
be seen. This pattern is known as the chromospheric network which is quite faint in
quiet sun regions and more enhanced near active regions. An individual network cell
is typically ~ 30,000 km across and lasts about 1 day. The bright patches are called
floculi or coarse mottles. A coarse mottle is made up of several bright fine mottles
about 7000 km by 700 km, lasting about 1 day with both upward and downward
velocities. Fine mottles are associated with spicules when viewed at the limb (see
sec. 1.1.1).

Chromospheric features and the photospheric magnetic field are related on a small
and a large scale. For example clumps of intra-network field within network cells are
associated with bright cell points. This field appears at centres of supergranules and
moves radially outwards to the supergranule edges where it either cancels or coalesces
with the network field. On the larger scale, strong fields around sunspots are related
to the plage structures.

Between the chromosphere and corona there is an even more narrow region known
as the transition region (TR). This region has a complex structure with many features
at or below the resolution limit of current observational instrumentation. Energy
seems to be mostly supplied by thermal conduction and downflow of hot gas from the
corona above. This means that dissipation of wave energy from the photosphere is
not significant. This interpretation was questioned by Feldman & Lamming (1994).
Measurements suggest that emission is due to tiny (~ 100 km) structures which are
not resolvable. Feldman et al. postulate that much of the ultraviolet (UV) emission
is due to these unresolved fine structures and only part is due to ‘true’ TR emission
(i.e. chromosphere-corona interface).

Both the chromosphere and the TR are confined to the network which is steadily
less sharply defined as temperature increases until the corona where it is not visible.

Plasma flow and photo-absorption affect spectral line profiles and so careful study



Figure 1.3: Image of the solar disk in He 11 304 A obtained using the Extreme-Ultraviolet Imaging
Telescope (EIT) on SOHO, revealing the mid chromosphere (~ 80,000K). The bright patches on the
disk are active regions which are situated above sunspots. The large structures above the limb are
prominences and the spiky structures evident at the poles are macrospicules.



Figure 1.4: Tmage of the solar disk in Fe 1x 171 A obtained using the Transition Region and
Coronal Explorer (TRACE) showing the upper transition region/lower corona at ~ 1,000,000 K.
Active regions are visible in two belts north and south of the equator. Plasma loops extending into
the corona are also evident.



of TR spectral lines, many of which are optically thick (i.e. have non-negligible opac-
ity) can provide information on mass motions and possible methods of energy trans-

port.

1.1.1 Solar spicules

The edge of the chromosphere is made up of numerous fine jet-like structures known
as spicules. These features are prevalent in the quiet sun and are significant in both
disk and limb observations. The focus of this work is on the modelling of spectral
emission from the chromosphere and the TR and so it is useful to consider these

spicule structures and their spectral characteristics is some detail.
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Figure 1.5: Eleven images of spicules at the limb obtained from different regions of the Ha line.
The discontinuity between the spicules and the disk is due to the fact that an occulter was used to
mask the disk to observe the spicules with the disk observations superimposed below.

Spicules were first described by Secchi (1877) and were named by Roberts (1945).
They are jet-like structures with aspect ratios of about 20 (Lorrain and Koutchmy,
1996 — henceforth LK) which rise to heights of around 10,000 — 15,000 km with



diameters ~ 150 — 200 km (eg. Withbroe, 1983; LK; Budnik et al., 1998). Thus
they exist at the resolution limit of current instruments (SUMER spatial resolution is
~ 1 arc sec which corresponds to ~ 1000km). The surface coverage of spicules is ~ 1%
(Athay and Holzer, 1982) with about 70,000 of them being present at any one time
(LK). They are most commonly observed in chromospheric spectral lines such as Ha
(fig 1.5) but also in extreme ultraviolet (EUV) lines from the upper chromosphere and
transition region (fig 1.3). Seen in Ha, upon reaching their maximum height their
root disconnects from the surface, the proper motion of the cool radiation source
becomes downward and they disappear (LK). Lifetimes are ~ 5 — 15 mins and
upward velocities are perceived as (and are generally accepted to be) ~ 25 km/sec.
This velocity is inferred from Doppler shifts measured at the limb and so is open to
misinterpretation if transverse velocities are present as Beckers suggests. LK add that
this velocity is also that perceived by the apparent motion of the spicule head and
that the velocity can be much larger (~ 50-100 km/sec) during the impulsive phase.

It is clear that spicule structure, formation and propagation are intimately related
to the magnetic field topology, with spicules, as discussed below, appearing within
magnetic elements (Lorrain and Koutchmy, 1993) at the boundaries of supergranule
cells. This link is evident when observing at the limb as well as on disk in the patterns
and groupings that are found. A further connection with the magnetic field is evident
in coronal holes (regions of very low coronal X-ray emission situated at the poles where
the magnetic field lines are open) in the presence of macrospicules or spikes which
extend to ~ 30,000 km above the limb.

Spicules are observable in spectral lines at upper chromospheric and transition
region temperatures. Budnik et al. (1998) observed typical “EUV inhomogeneities
possibly associated with spicules” growing (if viewed at the limb) horizontally and
vertically with increasing emission line temperature until ~ 1-2 x 10° K where the

structures appear totally diffuse.

Spicules On the Disk

Spicules have photoelectrically controlled spectroscopic characteristics, appearing in

absorption when viewed on disk. Spicules at the limb are associated with dark, and
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Figure 1.6: A region of the disk seen in Ha showing dark mottle features.

possibly also bright, mottles on the disk (fig. 1.6) which exist at the boundaries
of supergranule cells. Dark mottles are absorption features seen against a brighter
chromospheric background. Bright mottles are situated at lower heights than dark
ones and occur in the same regions where they form groups of around 50 mottles in
total forming coarse mottles, rosettes or bushes.

In mid chromospheric spectral lines, Doppler shifts corresponding to both upflows
and downflows are observed whereas in upper chromospheric lines upflows are domi-
nant (Doschek et al., 1976). In contrast, downflows are dominant in TR lines (Athay
and Holzer, 1982). These flows provide a key point of interest in the spicule debate
on the issues of chromospheric heating, coronal mass and energy balance, and the

question of what happens to the TR as a spicule rises beneath it.
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The Spectroscopy of Spicules

Spicules are most frequently observed in Ha — they are often referred to as Ha spicules
to distinguish them from EUV inhomogeneities. In the visible range they are also
often observed in Hf@ and calcium lines. Spicules are observed in the upper chromo-
sphere and TR in EUV lines of impurities such as C 1 — C 1v. Model based hydrogen
densities in spicules have been calculated as ~ 10'? cm™ at T, ~ 1.5 x 10* K (Pa-
pushev and Salakhutdinov, 1994). Athay & Holzer (1982), however, state that the
average hydrogen density within spicules is ~ 6 x 10*° cm 3. Spicules emit spectral

radiation at a range of chromospheric and TR temperatures. It is generally assumed
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Figure 1.7: Model of the variation of electron temperature (c.f. fig 1.1) and electron density with
height according to Vernazza et al. 1981.

that spicules have a ‘cool’ chromospheric core surrounded by a relatively hot TR
sheath. LK suggest in their model, however, a ‘hot’ core surrounded by a relatively
cool sheath (presumably surrounded also by a hot sheath). Instrumental resolution

is not yet sufficiently fine to answer this question.
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Figure 1.8: Two examples of spectral lines originating in the solar chromosphere. The solid lines
correspond to quiet-sun conditions and the dashed line corresponds to active-sun conditions. (Taken
from Phillips, 1992).

Many spectral lines originating from spicules and the chromosphere and TR in
general are optically thick and can display marked deviation from Gaussian profiles
(see fig. 1.8 ). Furthermore, plasma flow leads to the displacement of lines from their
rest wavelengths and possibly also of absorption profiles from emission profiles due
to Doppler motion. Thus asymmetries, Doppler shifts, self reversals and broadenings
abound in the lines of the chromosphere and TR. A significant contribution to these
features is made by large scale non-thermal motions such as rotations. Spicules may be
classified as being one of two types (Beckers, 1972): type I —spicules with wide profiles;
type II — spicules with narrow profiles. The distinction between these two may be
interpreted as being related to rotation. Line profiles are also complicated, especially
when viewed on disk, by spicule tilting, by the possible presence of unresolved spicules
and the effects of scattered light — both instrumental and due to the inter-spicular

medium which also possibly contains unresolved spicule structures.
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Papushev and Salakhutdinov (1994) have added to this picture and talk of intricate
changes in the Ha profile as the spicule rises. They say that all line profile parameters
change by ~ 30 — 40%, with 30 — 200s duration during the evolution of the spicule.
Furthermore they say that the profiles show asymmetries but that the ‘middle’ stage
is characterised by Gaussian profiles.

Most authors seem to agree that spicule scale heights® are ~ 1,500 km (~ 2,000 km
in coronal holes). On the matter of spicule heights, however, there is less coherence.
This is largely due to the ambiguous definition of height generally taken to be the
maximum height above the limb at which a spicule may be seen. Nevertheless, most
authors claim heights to be between 10,000 and 15,000km. The existence of spicules
(or, at least, spicule associated inhomogeneity) is more difficult to verify in the case
of coronal lines due to the relatively strong background emission. Budnik et al.
(1998) used the high resolution SOHO data to identify such inhomogeneities directly
by observing the variation of spectral line intensity with position in the vicinity of
spicules. Withbroe (1983), on the other hand, approached this issue by comparing
observed RMS fluctuations in the intensity with position with the expected statistical

fluctuations.

Implications of Spicules to the Mass and Energy Balance of the Corona

As the chromosphere and the TR separate the cool photosphere from the hot corona,
and spicules represent mass and energy flux upward from the chromosphere into the
corona, it is reasonable to expect spicules to play a significant role in the mass and
energy balance of the corona. Simple calculation of the upward mass flux reveals that
it is two orders of magnitude greater than that of the solar wind (Athay and Holzer,
1982). Clearly the majority of this material must flow back down again but only 1%
need remain to maintain the mass of the corona. Budnik et al. (1998) claim that
their SOHO observations mentioned above do show evaporation of spicular material
into the corona.

Views on the energy balance question are more varied. Beckers’ calculation of

! Atmospheric pressure falls off, roughly speaking, as e "/Hs  where h is the height above the
limb and Hj; is the scale height
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the kinetic energy of a spicule led him to believe that they do not contribute an
appreciable amount of energy to the corona. Athay and Holzer (1982), on the other
hand, calculated the gravitational potential energy gained by a spicules and found
it to be sufficient to power the corona if that energy was dissipated as the spicules
descended. They drew on the observed TR downflows as evidence for this. This
calculation was, however, dependent on the assumption that spicules rise to greater
heights than had been observed (~ 5x10%*km). Withbroe (1983) responded to the
Athay and Holzer model by utilising EUV observations to show that spicules do not
rise above 15,000 km. He then used DEM analysis to conclude that the observed
transition region downflows do not support this model and concluded that spicules

are probably not the primary source of heating of the corona.

1.1.2 Solar prominences

It is interesting to consider solar prominences, which are tongues of material that are
suspended in the corona since they emit a spectrum at chromospheric temperatures
and display optical depth effects. They exist at around 10,000 K, surrounded by
2,000,000 K coronal plasma and consequently have a TR sheath about them. Typical
quiescent prominences are 10,000—600,000 km long and 5,000—10,000 km thick and
sit at heights up to ~ 50,000 km above the photosphere. Typical lifetimes are around
a month. Their formation, structure, stability and ultimate eruption are the focus of
much modelling and observational effort and many questions concerning them remain
unanswered. Like spicules they appear in absorption when viewed on disk and are
visible in fig. 1.2 as dark lanes called filaments. They are also evident in this figure as
bright features at the limb. The temperature within the prominence is not sufficient
to collisionally excite hydrogen atoms to produce Ha photons and so the presence
of prominences in the Ha spectroheliogram seems surprising. The Ha photons arise
due to excitation of neutral hydrogen via absorption of Lyman continuum photons
from the underlying chromosphere and so do not have anything to do with the actual
electron temperatures.

In fig. 1.3 prominences are present despite the fact that this image reveals the
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sun at a temperature of ~ 80,000 K — a temperature much greater than that of
the prominence itself. This is due to emission from the prominence-corona transition
region (PCTR) that exists around the prominence which spans the temperature range
of ~ 10,000 — 2,000,000 K.

Prominences present many challenging modelling problems since their emission
spectrum and energy balance depend critically on photo-electric processes. Thus
the details of radiation transport must be carefully computed to model radiative

characteristics and power loss.

1.2 Spectral emission from plasmas

Plasmas are made up of atoms, ions and electrons which all radiate via different atomic
processes. Understanding such processes is necessary for the modelling of plasmas
and the interpretation of spectral data. This involves understanding the electronic
structure of atoms and ions and the interactions between particles and photons that
couple species, ionisation stages and energy levels to produce the resultant spectrum.
This problem is complex but can be handled for a number of regimes.

It is of interest to understand the processes that generate and sustain the solar
chromosphere and TR and that drive the processes therein. The principal, if not sole
method by which this may be achieved is spectroscopy — i.e. by detailed interpretation
and analysis of the light emitted from these regions. If the light emitting mechanisms
are to be understood, all the atomic processes that lead to photo-emission must be
accounted for. If an ion, A, of charge Z, with outermost electron in excited state 7 is

denoted A;’Z , then these processes may be summarised as follows:

Radiative processes
1. Spontaneous emission:
AZT"Z — A;Z + hv
2. photo-absorption:

A% 4 hy — A
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3. stimulated emission:

AjZ+hy—>A;rZ+hl/+hl/

4. photo-ionisation:

AfZ + hy — AT e

5. radiative recombination:

AT L e 5 AT + hy

6. stimulated recombination:

AT e+ by — AFZ + v + b

7. dielectronic recombination:

ArZ D — AMT 4 b (1.1)

Note that h is Planck’s constant (6.62618 x 1072* J s) and v is the photon frequency
in Hz. In dielectronic recombination an ion of charge Z+1 captures an electron which
loses energy to a bound electron of the ion, exciting it from level ¢ to level j, and
leaves the captured electron in a highly excited state denoted nl. At this point the
process may reverse in what is called Auger breakup, or the inner excited electron may
relax via the emission of a photon as indicated. Following this the captured electron
may cascade down to a lower level.

If an electron, e, in an energy state 7 is denoted e(g;), then the collisional processes

may be summarised as follows:

Collisional processes

1. Electron impact excitation and de-excitation:

AT te(g) = A;LZ + e(gy)
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2. Electron impact ionisation and 3-body recombination:

A7 +e(e) = A" +ete

3. Charge exchange recombination:

AP+ HY — A7 +p

If a plasma is sufficiently dense, as in the solar photosphere, then no radiation can
escape except from very close to the outer edge. All photons within the plasma that
are emitted are subsequently absorbed. Such a situation is termed complete ther-
modynamic equilibrium and the atom and ion excited state population densities are
characterised by detailed balance. That is, every individual reaction is balanced by its
inverse. In such circumstances the atoms, ions and electrons establish energy distri-
butions with characteristic temperatures. Free particles have a Mazwellian velocity

distribution given by

3/2 2
fv) =4n (27:27,) vZexp (—%) (1.2)

where v is the velocity, m is the mass; k is Boltzmann’s constant, and 7T is the

temperature. Bound states of atoms and ions have a Boltzmann distribution. Number
densities (populations) of atoms and ions in bound levels ¢ and j with statistical

weights w; and wj, are related by

Ni W; Ez — Ej
It _ ) 1.3
N, w7 ( KT ) (1.3)

where E; and E; are the energies of levels 7 and j respectively. For ions of the
same species but adjacent ionisation stages, these populations are given by the Saha-
Boltzmann equation, viz.
NZ Z h3
7T = (ZZ 1 3/2 61D (__Z> (1.4)
NN w2 (2am kT) kT

J

The deviation of plasmas from thermodynamic equilibrium is usually due to a deficit

in the radiation field. However, there are circumstances where collisional processes
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are so efficient that this deficit does not matter and collisional processes alone are suf-
ficient to maintain thermodynamic equilibrium populations. This situation is called
local thermodynamic equilibrium (LTE). LTE often holds for highly excited states due
to their large cross-sections and low transition energies. Low lying levels, however,
only achieve LTE at high densities.

Out of thermodynamic equilibrium, detailed balance does not hold. In this case,
however, a plasma in equilibrium will have atomic and ion populations satisfying sta-
tistical balance. That is, the sum of all the processes which populate a level (labelled

i) are balanced by those that depopulate it. Thus

Z |:Az’—>z + U(V)Bil_n'dl/ + Neqz(/eln' + Neqz(lpln] Ni’

i'>q line
b S [ ) Budy + Neg 4+ Nealf) ] N
<y me

+ N.N.o” + N2N,o® + NN, / w(v) Bysidr

= lz / U(V)Bi_m'ldy -+ Neq(i))i, + Neqz(gzi’]
il >g /line

+ Z |:Ai—)i” + ’U,(I/)BZ'_”'// dl/ + Neqi(e)iu + Nquziu]

il<i line

) dN;
+ /U(V)andli + Nog'¥), + Neqz@s] Ni+ —r (1.5)

where
e A;_,; - spontaneous emission from 7' — i
e u(v)Bj_,; - stimulated emission from i’ — i
e u(v)B;_» - photo-absorption from ¢ — 4’
o Neq§,el>i - electron collisional de-excitation from i’ — i
° Nqu,zii - proton collisional de-excitation from ' — 4
° Neq(e) - electron collisional excitation from 7 — 7’

i—i!

° Nqui, - proton collisional excitation from i — i’
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J u(v)B;_xdk - photo-ionisation from ¢

Nqus - electron collisional ionisation from i

Nqug - proton collisional ionisation from i

N.N.a{” - radiative recombination
. N3N+az(3) - three body recombination

e NN, [u(v)By_;dk - stimulated recombination

There is such an equation for every level from the ground to n = co. The solution of
these equations yields the population structure.

At low densities, such as those in the solar corona, radiation processes control the
de-excitation of electrons. Coronal equilibrium describes this regime by neglecting
the collisional de-excitation term in favour of spontaneous emission. Thus atoms are
excited by electron collisions and de-excited by spontaneous radiative decay. They
are collisionally ionised by electron impact, and recombine by electron collision. This
model neglects collisional de-excitation by assuming that sufficient time elapses be-
tween collisions to ensure that excited electrons decay radiatively. Also if an atom
is ionised, it has time to recombine before suffering collisions. Furthermore, photo-
excitation and photo-ionisation processes are ignored. This is reasonable if the density
is sufficiently low.

It is interesting to note that even at the low densities for which the coronal model
is valid, highly excited levels may still be collisionally dominated, and so have LTE
populations. This may be accounted for within the coronal model by treating such
highly excited states as part of the continuum.

Both the solar chromosphere and transition region exist between the thermody-
namic equilibrium and coronal regimes where all the radiative and collisional processes
come into play. Collisional-radiative modelling, first introduced by Bates, Kingston
& McWhirter (1962), caters for this middle ground and encompasses the low density
coronal and high density LTE regimes. In this model all radiative and electron colli-
sional processes are included. However, photo-induced ones (eg. photo-excitation and

photo-ionisation) are not.
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Collisional-radiative theory recognises the many indirect ways by which highly
excited levels can influence the dominant low lying ones. For example, electrons may
recombine into a highly excited state and then cascade down to lower levels. Or, fol-
lowing recombination there may be stepwise ionisation. These effects are combined
with the direct state resolved ionisation and recombination coefficients to produce the
collisional-radiative recombination and ionisation coefficients. Also included (Burgess
& Summers, 1969) is dielectric recombination to produce collisional-dielectronic re-
combination and ionisation coefficients.

To solve the statistical balance equations the quasi-equilibrium assumption is in-
voked, whereby the highly excited states are assumed to be in equilibrium with the
metastable and ground levels. Thus the population densities of all levels apart from
the metastable and ground levels, may be found relative to the metastable and ground
level populations. The quasi-equilibrium assumption follows from consideration of re-

laxation timescales. In general
Tmet ™~ Tg ™ Tplasma ™ Tion > Tord 2> Tee

where these quantities are the metastable, ground, plasma diffusion/dynamic, ion, or-
dinary excited state and electron-electron equipartition timescales, respectively (see
Spitzer, 1956; McWhirter & Summers, 1984; Brooks, 1997). The metastable and
ground timescales are similar to the plasma dynamic timescale and so their popula-
tions may only be calculated within a transport model which includes these dynamics.
However, the ordinary excited state timescale is much smaller than all three and so it
is reasonable to assume that at any time the ordinary excited states are in equilibrium

with the ground and metastables.

1.3 The problem of opacity

1.3.1 The radiative transfer equation

In the solar chromosphere and transition region the photo-induced effects that are

not handled within collisional-radiative theory become important. The plasma is said
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to be optically thick which means that on average emitted photons have a significant
probability of being absorbed before they are able to escape the plasma. This leads
to a loss of photons from the line-of-sight. Additionally, absorbed photons affect the
population structure which in turn affects the emitted radiation. Thus the system is
non-linear and is described by eqs 1.5, coupled with the radiative transfer equation

dl,(s)
ds

= Ju(s) = ku ()L (s) (1.6)

(see Mihalas, 1978, for a complete discussion of radiative transfer theory and Carlsson,
1997, for an eloquent summary of the same.) Here I,(s) is the monochromatic specific
intensity (normally called the intensity), j,(s) is the emissivity or emission coefficient,
ky,(s) is the opacity or absorption coefficient and s is the geometric distance along
the ray. These quantities will be defined in more detail in chapter 2. This equation
describes the propagation of photons along a ray and must in principle be solved
simultaneously with egs 1.5 if the population structure and /or the emergent intensities
along the ray are to be known. The radiation term in eqs 1.5 is u(v) which is related

to I,(s) as follows:

u(v) = h—;’/f,,(e, )dQ (1.7)

where d) is an element of solid angle. Thus the population structure is no longer
dependent merely on local plasma conditions but is coupled into the dynamics and
structure of the whole plasma. Consequently radiation transfer plays an important
role in determining the structure and energy balance of the solar chromosphere and
TR.

Eq. 1.6 implies that the number of photons escaping along the ray is proportional
to the opacity and also to the intensity itself. The directional dependence of the
intensity follows from the dependence of ds on direction. In the presence of fields (eg.
electric, magnetic or velocity), j,(s) and k,(s) may also be directionally dependent.

In a plane-parallel atmosphere the geometrical height, z, which increases outward
along the normal of the atmosphere, may be defined. If then the angle between the ray

and the normal of the atmosphere is labelled # and the directional cosine, u = cos @,



22

the radiative transfer equation becomes

dl,,.(z)

P = () = (2 o(2) (1.9

It is useful to write this equation in terms of the ratio of the emissivity to the opacity,
namely the source function, S, = j,/k,. Furthermore it is useful to make use of the

optical depth, 1, which is defined via
dr, = —k,dz (1.9)

With this the radiative transfer equation becomes

dl,,
dr,

p—t =1, -8, (1.10)

This is a first order differential equation and thus one boundary condition is required
for its solution. In a plane parallel atmosphere there are two boundaries and photons
escape through one boundary for negative values of y and the other boundary for
positive values of u. The conditions for each are I, (0) = 0 and I,/ (Tynaz) = Su(Timaz),

where the superscripts denote the sign of u. It follows that the solution of eq. 1.10 is

1 oo —(t=m)/n if
Ly(n) =4 ) Su(t)e dt >0 (1.11)
= S, (t)e~ (v =0/(=m) gy ifp <0

This is the formal solution of the radiative transfer equation and can only be evaluated
if the source function and opacity are known. The source function is dependent on
space, frequency and, in essence, upon intensity. The latter dependence follows from
that of the emissivity on the upper level population density and will be clarified in
chapter 2.

It is useful to define the contribution function to the intensity, Cy, which has the

defining property
Lu(m,) = / C1(2)dz (1.12)
It follows from eq. 1.11 that

1
Ci(z) = ;S,,(T,,)e_“/“/{,, (1.13)
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It is important also to consider the difference between pure absorption of a photon
and scattering of a photon. Both are significant in the radiative transfer problem.
In pure absorption a photon is absorbed leading to the excitation of an electron
which subsequently de-excites via a collisional process. Consequently pure absorption
leads to thermal coupling between the point of emission of the photon and that of
absorption. In the scattering process a photon is absorbed leading again to the
excitation of an electron which this time de-excites via a radiative process. Thus
the scattering process does not lead to thermal coupling but, unlike the case of pure
absorption, results in a distortion of the emission profile since the photon may be
scattered in any direction. Scattering leads to diffusion of photons from the Doppler
core where the probability of absorption (i.e. the opacity) is greatest. This in turn
leads to the distortion and/or self-reversal of emission lines (see fig. 1.8). This effect is
termed partial frequency redistribution within radiative transfer theory (see sec. 1.3.2).
If this is neglected then complete frequency redistribution is assumed. This assumption
is valid if there are sufficient randomising/redistributive collisions between photo-
absorption and re-emission to ensure that there is no dependence of the emission

profile on the absorption profile.

1.3.2 Solving the radiative transfer problem

The coupled equations of statistical balance and radiative transfer are currently im-
possible to solve completely given that in principle their solution involves plasma
geometry, flow and even electric and magnetic fields. Advances in computer technol-
ogy have led to more and more complex treatments of this problem but each solution
invokes approximations of either a physical or mathematical nature. These relate to
all aspects of the problem, from atomic physics considerations (eg. 2-level atoms —
Auer & Paletou, 1994) to the plasma geometries and dynamics (eg. one dimensional
static slabs — Carlsson, 1986; Anzer & Heinzel, 1999, 2000). Methods of solution may
be grouped into three categories: firstly the methods of radiative transfer, secondly

Monte Carlo computations and thirdly escape probability techniques.
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Methods of radiative transfer

Radiative transfer methods (see for example Carlsson, 1986; Olson et al., 1986) solve
the radiative transfer and statistical balance equations iteratively using a Newton-
Raphson technique. The equations are linearised using the Feautrier method (Feautrier,
1964) and solved using lambda iteration or Accelerated Lambda Iteration (ALI — see
Rybicki & Hummer, 1991). Detailed one-dimensional (1D) numerical modelling be-
gan with Poland et al. (1971) and Ishizawa (1971). Since then techniques have been
extensively developed to include many (i.e. more than two) atomic levels plus con-
tinuum states (Heasley & Mihalas, 1976), PRD (eg. Heinzel et al., 1987) and more
than one spatial dimension (eg. Paletou et al., 1993). Codes such as MULTT (Carls-
son, 1986) and MALI (Rybicki & Hummer, 1991, 1992) have been used by many
authors to consider solar and stellar atmospheres as well as solar structures such as
prominences and spicules.

Prominences represent a classic radiative transfer problem. Their temperature,
density, turbulence and magnetic field are now relatively well known but critical to
this understanding was the realisation that observed high excitation temperatures do
not reflect the actual electron temperature and density but are the result of non-LTE
effects. That is, the incident UV radiation from the chromosphere below has key
importance in the ionisation within the prominence. Photo-absorption is thus critical
to the energy balance of prominences from the standpoint of ionisation, particularly
of hydrogen, and of radiative power loss, particularly from the Lya and Lyg lines
which are optically thick and strongly self reversed (see fig. 1.8).

The radiative transfer calculations of MULTI and MALI each depend upon an
atomic and an atmosphere model. The atomic model contains information on colli-
sional and radiative excitation, de-excitation, ionisation and re-combination processes
for all the species to be considered. The atmosphere model contains information on
electron temperature and density and elemental abundances. On this basis the calcu-
lation consists of iterating back-and-forth between an estimate of the source function
and the computation of the associated radiation field until some convergence crite-
rion is reached. This yields key properties for each line including the source function,

contribution function, opacity, optical depth and emergent intensity as well as the
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excited state population structures for each species considered.

Models such as these are necessary for considering the energy balance in and ra-
diative power loss from optically thick and photo-ionised plasmas. This follows the
large oscillator strengths of Lya and Ly, coupled with the abundance of neutral
hydrogen in the TR, which lead to these lines being dominant and optically thick ra-
diators. Radiative transfer models are also necessary for the computation of absolute
intensities, intensity ratios of lines of different species and emergent line profiles.

The problem with these methods however, is that they are computationally in-
tensive, time-consuming and also usually limited in applicability to particular source
configurations which places a limitation on their validity for inhomogeneous plasmas.
Plasma geometries considered in this model are usually 1D plane parallel, semi-infinite
slabs (eg. Carlsson, 1986; Heinzel et al., 1987; Lanzafame, 1994; Hubeny & Lites, 1995;
Goutikakis et al., 1997; Anzer & Heinzel, 1999, 2000) that are stratified with elec-
tron temperature and density based on hydrostatic equilibrium (eg. Vernazza et al.,
1981, henceforth referred to as VAL), or 1D slabs that are vertically (Heinzel, 1995)
or horizontally (Mein et al., 1996) oriented and illuminated, perhaps, by an external
source such as the underlying chromosphere and transition region. Two dimensional
(2D) models have been developed which allow for transport in two directions but
source geometries in such calculations remain simplistic — 2D slabs (Paletou et al.,
1993; Auer & Paletou, 1994; Paletou 1996) or isolated prominence threads (Fontenla
et al., 1996) for example. In these thread models individual threads are modelled as
plane-parallel slabs immersed in a radiation field due to the other slabs.

The problem is that the solar atmosphere has a complex structure and the re-
sults from radiative transfer computations may only be interpreted within the simple
geometries for which they apply. For example, to approximate the solar transition
region as a plane parallel, semi-infinite slab, with electron temperature and density
following that of the VAL model, leads to emission at the limb (i.e. looking along the
infinite dimension) which is impossible to predict, and zero emission above it. Such a
model fails to account for the extension of the transition region into the corona due
to the spicule-like structures described in sec. 1.1.1. Moreover, these techniques pro-

vide no way to extract information directly from observations about optical depths



26

or plasma structure. This is not to say that radiative transfer based diagnostics of
plasmas are not made. Heinzel et al. (1996) performed a complex diagnostic of promi-
nences using 140 models computed by Gouttebroze et al. (1993). However, plasma
parameters deduced from such diagnostics can only be interpreted with reference to

a preconceived plasma configuration.

Monte Carlo methods

Monte Carlo techniques for radiative transfer have been used in astrophysics to model
plasmas with random geometries such as the Lya forest (Zheng et al., 1998) and
optically thick blobs in stars and the interstellar medium (Code & Whitney, 1995).
Such techniques have also been used to model solar phenomena such as coronal loops
(Guttebroze et al., 1986; Wood & Raymond, 2000). The advantage of Monte Carlo
radiation transfer simulations is that they naturally account for arbitrary illumination
and multiple scattering in complex geometries.

In the Monte Carlo method photon scattering is described by using random num-
bers to sample from probabilistic interaction laws in order to follow photons as they
scatter through a medium.

Again, however, approximations are necessary and in this case there is a trade
off between geometric complexity and detail in the line formation process. More
specifically, these calculations model random walks of photons and so purely describe
the scattering process. Many subtleties arising from absorption such as the influence
of opacity on the source and contribution functions and ionisation balance are not
included. Consequently these methods are restricted to moderate optical depths.
This is not a severe restriction since many astronomical lines have low but non-zero
optical depths. However, Monte Carlo techniques are model based and so, as with
the radiative transfer techniques, they provide no means by which plasma parameters

may be extracted directly from observations independently of a geometric model.
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Escape probability techniques

The escape probability was introduced by Holstein (1947) and associated expressions
have since been developed by a number of authors (McWhirter, 1965; Irons, 1979;
Hummer & Rybicki, 1982: Kastner & Kastner, 1990). The effects of opacity in
solar spectral lines have been studied on a number of occasions using such methods
(Jordan, 1967; Doschek et al., 1976; Doyle & McWhirter, 1980). Jordan established
the technique of using branching ratios of lines arising from a common upper level
to extract information on opacities directly from spectral observations. Doyle &
McWhirter subsequently developed this same technique to study opacity at the solar
limb and their work included a simple model of predicted line ratios from the region
on-disk up to the limb. Many authors have constructed models of both laboratory
and astrophysical plasmas using escape probability techniques (Doyle & McWhirter,
1980; Orrall & Schmahl, 1980; Keenan & Kingston ,1986; Brooks et al., 2000).
Escape probability methods, which will be discussed in detail in subsequent chap-
ters, rely on assumptions that simplify the source function term in eqs 1.5 and 1.6.
These assumptions naturally decouple and linearise the equations. Consequently
these methods provide approximate solutions to eqs 1.5 and 1.6 in a moderate optical
depth regime. This approach has the virtue of practicality. As stated above, escape
probability expressions provide diagnostic tools to extract plasma parameters directly
from observations. Furthermore they have the potential to be used in plasma models
of arbitrary geometric complexity. For example, Orral & Schmahl (1980) used atten-
uation factors (identical in principle to escape probabilities) to account for opacity
within prominence models. These models consisted of resolved slabs or unresolved
threads. The radiative transfer computations (as stated above) consider individual

threads in isolation and model them as plane parallel slabs.

1.4 Thesis overview

The techniques described above all rely on a set of assumptions which differ between

and within the three approaches presented. The validity of any solution, assuming any
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numerical schemes employed are effective (efficiently or otherwise), is entirely depen-
dent on the prescribed problem — that is the nature of the assumptions made. It does
not matter that a solution is numerically sophisticated if the underlying assumptions
are invalid.

This work aims to investigate the relatively simple escape probability techniques
for solving the coupled sets of equations of statistical balance and radiative transfer
(egs 1.5 and 1.6). The assumptions that underpin such techniques will be tested in
order to asses the extent of their validity and the nature of their invalidity as the
regime is entered within which they break down.

In chapter 2 an overview of the techniques will be given and their coupling to
simple atmosphere models will be demonstrated in comparison with data from the
SOHO-SUMER spectrometer. In chapter 3 these methods will be reviewed to consider
inhomogeneous models in a consistent way and to assess the modification to the source
function due to opacity. In chapter 4 the effects of line blending will be analysed and
in chapter 5 the influence of structure and plasma flows will be examined. Then in
chapter 6 the SUMER observations discussed in chapter 2 will be re-visited from a
model and diagnostic perspective. The improved escape probability techniques will be
used to re-assess simple empirical models and to extract information on optical depths

and structure directly from observations in a manner that is model independent.



Chapter 2

The escape probability approach to
opacity

It is clear that opacity as a phenomenon is at its most challenging in plasmas that exist
between the two extreme regimes of thermodynamic equilibrium (eg. the photosphere)
and optically thin plasma (eg. the corona). Between the photosphere and the corona
the electron density varies from ~ 10'* to ~ 10° ¢cm™ (see fig. 1.7) and conditions
change from those of thermodynamic equilibrium to optically thin so that in between
— i.e. in the chromospheric and the TR — there exists non-LTE plasma of significant
opacity. Conditions and emission from such plasmas are complicated by long range
coupling due to photo-absorption that may involve different electronic transitions and
potentially a variety of atomic species. Consequently, a bound electron in a plasma,
will potentially ‘see’ the rest of the plasma to some considerable distance or even in
its entirety and conditions at this point are thus determined by those at all ‘visible’
positions. Each point in an optically thick plasma is therefore coupled in terms of
energy and excitation to non-local regions with potentially different temperatures,
densities, geometries and flows.

Opacity modifies the excited state population structure of an ion via the intro-
duction of photo-excitation terms in the statistical balance equations. In turn, this
modification influences spectral line emission. Additionally, the emission along a line-

of-sight is affected by opacity due to a loss of photons along that line-of-sight either

29
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by absorption or scattering. It follows that opacity influences radiative cooling (or
heating) timescales which are relevant to radiative power loss. Even though the local
radiative power loss coefficients in a dynamic plasma may not be sensitive to opac-
ity, the time taken for photons to propagate through and escape from an emitting
structure is sensitive. Therefore opacity must be significant from an energy transport
perspective in at least some dynamic plasmas. Furthermore, photoionisation will al-
ter the ionisation balance which in turn modifies spectral emission characteristics and
the radiative power loss functions at a particular temperature.

A more subtle effect is that of partial frequency redistribution which relates to the
ultimate fate of absorbed photons. The effect of this is to diffuse photons in frequency
space toward the line wings thus altering (principally but not exclusively) emergent
line profiles.

The emission from an optically thick plasma is characterised by two sets of coupled
differential equations, namely those of radiative transfer and statistical balance —

eqgs 2.1 and 2.2 respectively.

W) _ j(s) - m(s)1L0) (2.1)
dN,(r) Am =
w8 = A aNu(r) + S BaNi(r) [ L) o)y

+ other collisional and radiative terms (2.2)

These were discussed in some detail in secs. 1.2 and 1.3. Eq. 2.2 is written here for
level u and differs from eq. 1.5 in that the photo-absorption process corresponding to
the transition [ — u has been included and the spatial dependence is made explicit.
Statistical balance holds if all derivatives, dN,(r)/dt, are zero. That is, it holds
for ions whose atomic populations are in steady state. If this is so then the loss of
electrons from a level due to excitation, de-excitation, ionisation and recombination
is balanced, statistically speaking, by the reverse processes that serve to populate the
level. This contrasts with thermodynamic equilibrium where each process is balanced
by its inverse (detailed balance).

The radiative transfer equations describe the propagation of photons along a line-

of-sight and so have obvious relevance to observed emission. In integrating eq. 2.1,
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contributions to the intensity, both negative and positive, at each point, are summed.
Coupling with eq. 2.2 is via the dependence on the population distribution terms
implicit within the emission and the absorption coefficients which are proportional
to the upper and lower level populations respectively. Coupling also acts in the
reverse direction since the statistical balance equations require for their solution at any
particular point, knowledge of the radiation field. This term involves an integration
of the intensity along every line-of-sight that terminates at the point of interest and
thus requires, in principle, the solution of eq. 2.1 along each of these lines of sight.
It is then clear that opacity presents a significant difficulty and, as discussed in
sec. 1.3.2, a number of approaches exist to deal with it. In this work spectral emission
in lines of moderate opacity is of interest with the focus being on emitting plasma
structure. For such lines the relative simplicity of the escape probability approach is
desirable since it allows complex emitting geometries to be considered. In this chapter
the escape probability and associated quantities will be defined and evaluated and
applied to data from the SOHO-SUMER spectrometer to extract optical depths of
spectral lines of C 11 and C 111. Escape probabilities will also be used in conjunction
with some simple stratified atmosphere models to determine their effectiveness in
describing the observed spectral emission characteristics on crossing the solar limb.
In subsequent chapters the escape probability and absorption factor expressions will

be analysed and developed for use within more detailed atmosphere models.

2.1 The effect of opacity on emergent intensities

The escape probability approach fits naturally within a collisional radiative framework
allowing opacity to be included in the equations of statistical balance. The following

definitions are made:

1. intensity, I, — the number of photons of frequency v propagating in a given
direction, crossing a unit area perpendicular to that direction, per unit volume,

per unit time, per unit solid angle, with units cm™2s~!st™!.

2. emissivity, j, — the number of photons of frequency v emitted at a point per
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unit volume, per unit time, per unit solid angle, with units cm 3s !st~!.

3. absorption coefficient, , — defined such that «,I, is the number of photons of

frequency v absorbed at a point per unit volume, per unit time per unit solid

angle. x, has units of cm™.

These definitions lead to the following:

W) = AaNu(r)oulv) (2.3

o () = %NlhyBl_mqﬁa(y) (2.4)

where ¢.(v) and @,(v) are the emission and absorption profiles respectively. From

these, eqs 2.1 and 2.2 may be rewritten as follows

di(s) 1 Ny(s
" = ANG) [1 N 2% / L(s)ée(v dy] (2.5)
dNu(r) Nl(r)wu 2 - ]
= _Au Nu 1- DY II/ a
dt ilNu(r) [ Ny (r)w; 208 / (x)@a(v)dv
+ other collisional and radiative terms (2.6)

Here ds is an element of distance along the line of sight, A, ,; is the Einstein A-
coefficient, N, and N, are the upper and lower level population densities respectively
and the w’s are statistical weights.

The terms in the brackets are markedly similar, the only difference being in the
specification of the intensity terms. In the eq. 2.5 the intensity term I,(s) is the
intensity at the point s along the path 0 — s and so is related to the emissivity,
ju(s), along that path. In eq. 2.6, however, I,(r) is the radiation field at r due to
surrounding plasma and so is related to the integral of j,(x), and thus also of N,(x)
over all points x.

The escape probability approach may be illustrated if eqs 2.5 and 2.6 are re-written
as follows:

dli(s) 1

= - AuNu(s)g(s) (2.7)
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dN,(r)
t

= —AuNy(r)A(r) + theotherterms (2.8)

g(s) is the escape probability, representing the probability that a photon emitted at
a point s in the direction of the line-of-sight will escape the plasma. A(r) is the
Biberman-Holstein coefficient or net-radiative bracket (Irons, 1979) and is called here
the absorption factor. It relates to the probability that a photo-absorption will occur
at the point r. Both terms may be viewed as providing parametric adjustments
to the Einstein A-coefficients in the equations of radiative transfer and statistical
balance. Thus, providing the A-coefficients are modified appropriately, the optically
thick population structure may be obtained in an identical manner as the optically
thin one. This will be discussed in more detail later.

The escape probability was first introduced by Holstein (1947) and has subse-
quently been considered by many authors (e.g. McWhirter, 1965; Irons, 1979; Doyle
& McWhirter, 1980). Holstein’s work focused on the emission point of view but
McWhirter (1965) considered the population structure and since then expressions
have been used and developed in both contexts. More recent are works by Kastner
& Bhatia (1989), Kastner & Kastner (1990) and Kastner & Bhatia (1992). These
authors have extensively developed escape probability and absorption factor expres-
sions and used them for predicting emergent intensities and optically thick population
structures. A useful aspect to the escape probability approach is in diagnosing optical
depths directly from observations — a method that was established by Jordan (1967).
This technique (described in more detail below) makes use of observed branching
ratios of spectral lines that share a common upper level and has been used by several
authors (Doyle & McWhirter, 1980; Keenan & Kingston, 1986; Brooks et al., 2000)
to extract optical depths from spectral observations of solar plasmas.

In first deriving an expression for the escape probability, Holstein, rather than
evaluating the bracketed term in eq. 2.5, considered the definition of g(s) as a prob-
ability of escape. If one considers the propagation of a photon by a distance d along

a line of sight, the radiative transfer equation is

dI, (s)

—dS = _K'I/,l%ulu(s) (29)

= I,(d) = I,(0)e Fni-u (2.10)
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Holstein defined T'(ky —-uS,v) = exp(Kui-us) as the monochromatic transmission

probability. The escape probability is this quantity averaged over the emission profile,

de(v), ie.
g(s) = / S(V)eT (Kutres, v)dv (2.11)

Ku,i—y 18 in general a function of space as well as frequency but if it is assumed to be
constant with respect to space, and furthermore, if emission and absorption profiles

are assumed to be purely Doppler broadened, i.e.
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Figure 2.1: Plot of g{ro} versus 7.

0) = ) = 00) = = —en{ - (22)'} (212)

with Avp the Doppler width, then if the line of sight is defined by s: 0 — L,

1 2 w2
g(s) = ﬁ/_me exp{—7o(s)e ™ } du (2.13)
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Figure 2.2: Solid line — g{7o} versus 79; dotted line — g{79/2} versus 7o (see sec. 2.6 for discussion).

where u = (v — vy)/Avp and 79 = Koyu(L — s). It is convenient to write g(s) in
terms of optical depth, i.e. as g{7o(s)}. Following Mitchell & Zemansky (1961),

70(s) = 1.16 7%/ M/T; ¢ N, fiu(L — 5) (2.14)

where T; is the ion temperature (K), M is the atomic mass number, )q is the central
wavelength (cm), N; is the number density of the lower level of the transition (cm™2),
fi« 1s the absorption oscillator strength and L is the physical thickness of the plasma
along the line of sight (cm). A plot of g{7y} versus 74 is shown in fig. 2.1.
Integrating eq. 2.7 yields
1

I= EAu—)lNug{TO}L (2.15)

where g{7o} is the line-of-sight averaged escape probability and T, is the total optical
depth along the line-of-sight, i.e.

70 = 1.167%/ M /T; A\gN, f1su L = 70(0) (2.16)
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Since the density is assumed constant, g{7o} is given by

g{mo} = % /O:O ll — eop{-me™) du (2.17)

To

{1} is compared to g{ry/2} in fig. 2.2.

Although g{7o(s)} is the probability of escape, it is identical to what Irons (1979)
called the transmission factor, T (7o), which is a more appropriate label for a general
picture. The former is a probability of escape since it relates to the likelihood of a
photon propagating from its point of origin to a second point that is located outwith
the plasma. If, however, that point is within the plasma then, though the probabil-
ity is purely that of propagation from one point to another and not specifically of
escape, the expression is identical. In this case transmission factor is the appropriate
label. Kastner & Kastner (1990) describe g{7o}, which they denote by p;(7, k,7:0),
as corresponding to the case of isolated emitters and absorbers (denoted ‘0’) as it
does not include the effect of emission at other optical depths along the line-of-sight.
Averaging this expression along the line-of-sight leads to what Kastner & Kastner
describe as being the proper escape probability for emergent intensities, given by
ps(2, kT 1) = g{mo}. This represents the mean probability that a photon, emitted
from some point along a line-of-sight of depth 7y, in the direction of the line-of-sight,
will escape from the plasma, as described above.

This expression assumes that the only effect of opacity is to scatter photons out
of the line-of-sight. This is not true as photons may also be scattered into the line-
of-sight. This was recognised by Jordan (1967) who wrote

Nybigi
1= 2 (ba[l ~ gn))

E; ~ NW,; = (2.18)
where Fj; is the energy intensity (E; = hvl;), W; is the fraction of photons created,
escaping in line 4; ¢; is equivalent in principle to g{7} and the denominator accounts
for the scattering into the line-of-sight. This was subsequently re-written by Kastner
& Bhatia (1992) as the correct line-of-sight escape probability, p., which is given by
Pr.i
1= 3261 = pai) (L — Pra) (1 — Pya)
3

pe,j = (219)
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where pg; is the photon loss probability (defined as the ratio of collisional de-excitation
to total de-excitation — Kastner, 1981), p;; = pf(ﬁ,E,T : 1) = g{m}, and py,; =
ps(7, lcfi,r : 0). py; is the mean probability that a photon emitted anywhere in the
layer will travel to the surface and escape. This latter term is equivalent to Irons’
escape factor, 6 (Irons, 1979).

2.1.1 Deduction of opacity from observations

It was pointed out by Jordan (1967) that for intensity ratios of lines arising from a
common upper level the denominator of p. ; cancels out leaving just py; = g{m} as
the appropriate escape probability for this ratio analysis.

Jordan introduced the idea that such a quantity could be used to diagnose optical
depths from observations of such ratios. She wrote the energy intensity ratio of two
lines, 1 and 2, arising from a common upper level as

i _bha s
Ey A1 bago

where ¢; and go are the escape probabilities for lines 1 and 2 respectively (equivalent

(2.20)

in principle to g{Tél)} and g{TéZ)}) and b, and by are the probabilities that photons
will be emitted in lines 1 and 2 respectively, i.e.

b= 4 (2.21)
'Y (An 4+ CuN) + X (uy By, + CrN) '

n

where the sum over n refers to processes below the excited level and the sum over
m refers to processes above the excited level. C, N, is the collisional de-excitation
rate, C,, N, is the collisional excitation rate and u,B,, is the photo-excitation rate.
Although her escape probability expression was much simpler than those considered
here and was derived by assuming that all photons emitted in the line wings where
7 < 1 escape whereas all those emitted near line centre where 7 > 1 do not, the idea

is effective. In the present notation, equation 2.20 is

Iuﬁll _ A’u%ll g{TO,hﬂu} (2 22)
Iu—)lz Au—)l2 g{TO,l2—>U}
oot Lusi Ausiy (2.23)

g{TO,lz—Yu,} I’u—)lg Au—>l1
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Figure 2.3: Plot of A2_2g{70}/A2-19{70/3.35} versus 7o. This ratio is equal to the intensity ratio
of the C 111 252p3P - 2p?3P 2-2 line over the 1-2 line. Optical depths versus position may be
determined by comparison of the observed ratios shown in fig. 2.10a.

Photo-absorption is most likely to occur when the lower level populations are large and
long lived — i.e. metastable. Such populations, however, are collisionally controlled
and so the relative populations of two metastable levels of an ion are insensitive to

opacity and may be determined in an optically thin model, i.e.

Togiou = CONSt X To s (2.24)

= Tolou = Tol—u/cONSt (2.25)
_ {700 >u}

N I ’ 9.26

e = B (G ) 22

where

R(70) = g{70,uu}/g{70,11u/const} (2.27)

Thus optical depth may be deduced directly from observations of spectral line inten-

sities. For example, fig. 2.3 shows Ay 2g{70}/A2-1G{70/3.35} versus 7y. Comparison
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between this curve and observed values of the I(2-2) /1(1-2) ratio of the C 111 252p* P —
2p?3 P multiplet (1175 A) yields values for 79 9_o. This is demonstrated in sec. 2.3.

2.2 The effect of opacity on the population struc-

ture

It is demonstrated above that in the ratio of lines arising from a common upper
level, the term that accounts for the effect of scattering into the line-of-sight disap-
pears. Equivalently, it can be said that this ratio does not depend on the population
structure. However, there is an effect on the population structure due to opacity.
McWhirter (1965) introduced an escape factor type approach to this problem as fol-

lows. The intensity term, I, in eq. 2.6 for some point in a layer is

! /0 710, 6)d0 (2.28)

T 4n

where I,(6, ¢) is the intensity along a path in the direction (6, ¢) and df2 is an element

L

of solid angle. I,(6, ¢) may be obtained for the constant density case via the solution

of the radiative transfer equation, i.e.

dl,
5 VII/ = J
I +K J
d
= (L) = i,
K
=Lz = = ehiv(b=2) _ o—huz
@ = %] |
K K
=1,=1(L) = “[l-e™="11-e09 2.29
W = 2| J=71 } (2.29)
where L is the path length in direction (6, ¢) and 7,(0, ¢) = k, L. Thus
_ 1 A .
A Jo g,
= Z[1— 0]
Jv

(2.30)
where 1 — e=™(0:9) is the average of 1 — e ™(%%) over direction. I, may be written as

I = %[I—B_F”(0’¢)] (2.31)
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for 7, = k, L where L is some representative length. If it is further assumed, as it was
earlier, that the emission and absorption profiles are identical and are purely Doppler
broadened, then

Ky  Njw, 208

i Now @ 232
From eq. 2.6
Alr)=1— %l((?)‘:)l% / I, (1)é(v)dv (2.33)
and thus it follows that
Alr)y=1- = /oo [1 — exp{—%oe_“2}] eV duy = 9{7o} (2.34)
VT )

This is a useful result except for the fact that the precise meaning of 7y is not clear
(this is discussed more in sec. 2.6.)

A less ambiguous result may be obtained as follows: consider a plane parallel,
semi-infinite layer of constant density and thickness D, and consider a point, 0, at its
centre. Now consider the intensity, dI, at 0 due to a volume element, dV, located at
the point r. This may be written as
e
r2

dl,

dv (2.35)

The intensity, I,, is then

1 jue—n,/r
n=u///
47 r2 v
v

2 g D/2 roo '1/ —KyT
= 4—/ 2/ / J 62 rdrdzdf (2.36)
™ Jo 0 T

r

Changing the order of integration yields

D/2 pr i e—kuT o [D/2 ;i o—kuT
I, = / / e dwdr + / / e " dxdr
0 0 r D2 Jo r

D/2 d o0 jue_lﬁ?u’r
e 'U 7K’Vrd _
/0 Jve Tt 2 Jp)2 T
Iy —kyD/2 Ky D (n,,D)]
= —|1- —F 2.37
;«W{ ¢ Ty (2.37)
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Figure 2.4: Plot of g{ro/2} versus 7.

where F; is the first exponential integral. It follows that

1 0 Ky, D Ky, D
A= 1_ﬁ/_ooe_UZ [1_€_HVD/2+ 2 El( 2 )]du

_ L/OO 2 —/{06_“2D B /ﬁoe_“2D > /ﬁoe_uzD p
IV B 2 2 N2 “
(2.38)

1.e.

(2.39)

Thus the absorption factor for a plane parallel slab of constant density may be
written purely as a function of the perpendicular optical depth and so it is called here
9{m0/2} (Brooks et al., 2000). This expression is the same as that denoted by Bhatia
& Kastner (1997) as SEFD(C,T) (which stands for slab escape factor, Doppler which
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Figure 2.5: Solid line — g{m0}; dotted line — §{70}; dashed line — g{ro/2} versus 7.

is a function of position, C, in the layer and optical depth, 7" — Bhatia & Kastner’s
notation). g{7o/2} is plotted versus optical depth in fig. 2.4. In fig. 2.5 it is shown
in comparison with g{7} and g{7y} where it can be seen that it is close to g{7o}-
Figs 2.6 and 2.7 show the C 111 2p?3 P, /2p?3 P, and 2p*3 P, /252p3 P, population density
ratios respectively, versus optical depth. Both are calculated by including appropriate
9{70/2} values in the statistical balance equations. The former ratio varies markedly
for small values of optical depth but levels off with large values. This is due to the
sensitivity of the corresponding g{7y/2} ratio which is high for small optical depth
values and low for large values. Fig. 2.7 illustrates the dependence of the source

function of the C 111 252p P, — 2p?3 P, line on optical depth based again on g{7/2}.

2.2.1 Extrapolation to all transitions of an ion

Since optical depth may be extracted from observation as described above, if this is

done for a spectral line at disk centre then the absorption factor is also known for
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Figure 2.6: Plot of C 111 2p?3 P, /2p?3 P, population density ratio versus 7o based on g{7o/2}.

that line. As stated earlier in sec. 2.1.1, the spectral lines that are most significantly
modified by opacity are those whose lower levels are metastable. These levels are not
significantly altered due to their large population densities and are collisionally con-
trolled. Thus the relative population of metastable components is negligibly affected
by opacity and may be calculated by solving eq. 2.6 in the optically thin approxi-
mation. It follows that optical depths for all lines of an ion whose lower levels are
metastable may be deduced via eq. 2.24 from a single optical depth value. If it is

assumed that all other optical depths are negligible then all are known for the ion.

2.3 Opacity deduction at the limb of the sun

In September 1996 an observing sequence was run using the SUMER spectrometer
on board the SOHO spacecraft. SUMER is a normal incidence extreme ultraviolet

(EUV) spectrometer (Wilhelm et al., 1995) with a spatial resolution of ~ 1 arc sec
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Figure 2.7: Plot of C 111 2p?3P,/2s2p3 P, population density ratio versus 79 based on g{79/2}.
This ratio is scaled so that it is unity for an optical depth of 0. This ratio illustrates the dependence
of the source function of the C 111 252p P, — 2p?2 P, line on optical depth.

which corresponds to a distance a little less than 1000 km on the sun. The sequence
comprised of east-west scans in 18 spatial steps over the west (receding) limb of the
sun. Surface plots of the cross-limb data are shown for the C 11 904 A and C 111 1175 A
multiples in fig. 2.8. The limb region was chosen for its great variation in optical depth.
It can be seen from eq. 2.16 that the optical depth of a spectral line is proportional
to both the lower level population density and the thickness along the line-of-sight
of the emitting layer. Thus, thinking of the layer as a spherical shell above the sun’s
surface, on approaching the limb from the disk the optical depth increases as the
line-of-sight thickness increases. On crossing the limb the optical thickness doubles
as the portion of the emitting layer on the far side of the sun can be viewed, reaching
a maximum when the edge of the emitting layer is reached. After this point, in a
stratified atmosphere picture the optical depth decreases rapidly due to the fall off of
density with height above the surface.
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Figure 2.8: Surface plots of total flux in the slit/raster plane for the C 11 904 A (top) and
C 111175 A (bottom) multiplets. Note that the slit dimension is up and to the left and the raster
dimension is down and to the left. The low counts to the extreme left correspond to the off-limb
data. The low counts at the top left in the C II case and the bottom right in the C 111 case are due
to un-exposed regions of the detector.
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The observed SUMER spectral line fluxes (proportional to intensity) were analysed

in the escape probability model described to obtain optical depths for all the spectral

lines of C 11 and C 111. The results of this analysis are shown in tables 2.1 — 2.5.

Table 2.1: Summary of data for the C 111 252p 3 P, —2p? 3 P, transition for each raster scan position.

T0,2_2/T(),1_2 = 3.204

Pos.(") 7o2-2 G{m02-2} To2-2 g{102-2}
943.06 0.74 0.78 0.35 0.79
94494 094 0.74 043 0.75
946.81 1.09 0.71 049 0.72
948.69 1.27  0.67 0.56 0.67
950.56 1.05 0.71 047 0.73
95244 1.18 0.69 0.53 0.70
954.31 1.86 0.58 0.78  0.60
956.19 3.42 0.41 1.23 0.45
958.06 - - 3.12  0.17
959.94 - - 424  0.11
961.88 8.64 0.21 2.00 0.29
963.75 1.68 0.60 0.71 0.62
965.63 1.27  0.67 0.56  0.69
967.50 1.42 0.64 0.62 0.66
969.38 1.81 0.58 0.76  0.60
971.25 1.67 0.60 0.71 0.62
973.13 2.24 0.53 0.90 0.55
975.00 2.13 0.54 0.87 0.56

2.4 Atmosphere Modelling

Spectral intervals spanning the C 11 2s2p2P — 2s2p®2S multiplet at ~ 1036 A and the
C 11 252p° P — 2p*3 P multiplet at ~ 1175 A are shown in figs 2.9a and 2.10a respec-

tively. The multiplet components are labelled according to their J quantum numbers.

Observed flux ratios for the C 11 I(3/2-1/2)/I(1/2-1/2) ratio and the C 11 1(2-2)/I(1-

2) ratio are shown in figs 2.9b and 2.10b. As stated earlier, in both cases the lines
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Figure 2.9: (a) Spectral interval spanning the C 11 25?p?P — 2s2p>2S (1036 A) multiplet with
component identification. The ordinate scale records the number of counts integrated along the
line-of-sight and for each pixel along the wavelength scale measured in the 100 sec. of exposure time.
(b) Branching line intensity ratios versus raster position in arc sec relative to the disk centre. The
set of values correspond to the 1(3/2-1/2)/1(1/2-1/2) ratio. The solid line shows the corresponding
A-value ratio.
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Figure 2.10: a) Spectral interval spanning the C 111 252p*P — 2p?3P (1175 A) multiplet with
component identification. Ordinate scale as in fig. 2.9a. (b) Branching line intensity ratios versus
raster position in arc sec relative to the disk centre. The upper set of values (x’s) correspond to the
I(2-2)/I(1-2) ratio and the lower set (<’s) correspond to the I(0-1)/I(2-1). The solid lines show the
corresponding A-value ratios.
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Table 2.2: Summary of data for the C 111 252p 3Py — 2p? 3P, transition for each raster scan
position. 7p0_1/709,2-1 = 0.779. Since the optical depth ratio is fairly close to unity, the absolute
optical depths inferred here are expected to have large associated errors and would be more reliably
obtained from the 2-2 values shown in table 2.1.

Pos.(") 700-1 g{m0-1} Too-1 9{70,0-1}

943.06 091 0.77 039 0.77
94494 1.16 0.71 0.48 0.72
946.81 1.47 0.6 0.58  0.68
948.69 1.55 0.64 0.60  0.67
950.56 1.07 0.73 045 0.74
95244 1.25 0.69 051 0.71
954.31 1.36  0.67 0.55  0.69
956.19 2.02  0.57 0.72  0.62
958.06 2.34 0.52 0.79  0.59
959.94 3.26 0.44 0.94 0.54
961.88 1.20 0.70 0.50  0.72
963.75 1.00 0.75 043 0.75
965.63 1.35 0.66 0.54 0.70
967.50 0.51  0.87 024 0.85
969.38 1.39  0.67 0.56  0.69
971.25 0.98 0.75 0.42 0.75
973.13 0.01 1.00 0.00 1.00
975.00 0.00 1.00 0.00  1.00

involved arise from common upper levels and so the ratios do not depend upon the
population structure. Thus the ratios are only modified from their optically thin val-
ues (shown in each case by a solid horizontal line) due to the scattering of photons
out of the line-of-sight. Variations in the ratios therefore reflect variations in opti-
cal depth which is, simplistically speaking, linearly dependent on the length of the
line-of-sight and on the lower level population density (see eq. 2.16).

Consider first the C 111 ratio plot (fig. 2.10b). The optical depth ratio of the 0-1
component to the 2-1 component (7p9-1/702-1) is close to unity. Consequently the
escape probability ratio of these two lines is also close to unity for all optical depths.

It follows that the corresponding intensity ratio does not deviate significantly from
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Table 2.3: Summary of data for the C 11 25?2p %P3/, — 252p* 25} /5 transition for each raster scan
pOSitiOH. 7'073/2_1/2/7'0’1/2_1/2 =1.97.

Pos.(") Togje—1/2 GiTo3/2-1/2} Tosje—1/2 9{T03/2-1/2}

943.06 5.30 0.31 1.47 0.39
94494 5.25 0.31 1.46 0.39
946.81 4.95 0.32 1.42 0.40
948.69 5.70 0.29 1.51 0.38
950.56 6.23 0.27 1.56 0.37
952.44 6.00 0.28 1.54 0.37
954.31 6.70 0.26 1.60 0.36
956.19  5.80 0.29 1.52 0.38
958.06 6.20 0.27 1.56 0.37
959.94 10.2 0.18 1.80 0.32
961.88 6.00 0.28 1.54 0.37
963.75 2.82 0.46 1.03 0.50
965.63 0.36 0.88 0.17 0.89
967.50 0.36 0.88 0.17 0.89
969.38 - - - -

971.25 - - - -

973.13 - - - -

975.00 - - - -

the optically thin value on crossing the limb. However, the 799 o/7 12 ratio is ~ 3
and so the intensity ratio I(2-2)/I(1-2) is opacity sensitive. On disk the emitting layer
is only moderately thick and so the observed flux ratios are close to their optically
thin value. As the limb is approached the ratios deviate markedly from their thin
value due to the variation of optical depth with line-of-sight thickness, as discussed
in sec. 2.3. This deviation is most pronounced at the position of the visible limb
(~ 959.6 arc sec) where the line-of-sight doubles in length. The ratio continues to
drop until the inner edge of the emitting layer is reached (~ 964 arc sec) whereafter it
rises again toward the thin value. In a stratified atmosphere picture, this rise is due to
the fall off of density with height above the solar surface. The ratios do not return to

their optically thin value as might be expected but rather level off at a value similar to
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Table 2.4: Summary of data for the C 11 25?2p P35 — 2s2p* 2Py transition for each raster
scan position. 7o3/2-1/2/70,1/2—1/2 = 0.507. The opacity ratio is again fairly close to unity and the
comments on table 2.2 apply.

Pos.(") Togje—1/2 GiTo3/2-1/2} Togsje—1/2 91iTo3/2-1/2}

943.06 0.66 0.80 0.29 0.83
944.94 047 0.85 0.21 0.87
946.81 0.31 0.90 0.14 0.91
948.69 0.12 0.96 0.06 0.97
950.56  0.33 0.89 0.15 0.91
952.44 0.49 0.85 0.22 0.87
954.31 047 0.85 0.21 0.87
956.19 0.19 0.94 0.09 0.95
958.06 0.43 0.86 0.20 0.88
959.94 0.33 0.89 0.15 0.91
961.88 0.39 0.87 0.18 0.89
963.75 0.12 0.96 0.06 0.97
965.63 0.14 0.95 0.07 0.97
967.50 0.10 0.97 0.05 0.98
969.38  1.50 0.63 0.54 0.70
971.25 1.47 0.64 0.53 0.70
973.13 8.46 0.21 0.99 0.52
975.00 - - 1.41 0.40

that on disk. A plot of observed flux of the C 111 25s2p° P, — 2p?3 P, line at 1175.711 A
versus position is shown in fig. 2.11. It is clear that at the heights above 967 arc sec
where the ratios indicate that the lines are thick, the fluxes are very small and so it
is possible that the observed signal is dominated by instrumentally scattered light —
light that reflects off the interior of the telescope prior to passing through the entrance
slit. Instrumentally scattered light originates from points on the solar disk and thus it
would be reasonable to expect such light to imply opacities associated with the disk.
This idea is supported by the fitted centroid positions of the C 11 1175 A multiplet
components which are shown in fig. 2.12. The overlapped 2-2 and 1-1 components
are awkward to fit, especially at the limb where the optical depths are greatest and

thus the deviation due to opacity of line-shapes from Gaussian is most significant.
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Table 2.5: Summary of data for the C 11 25?2p 2 P3» — 252p* 2 P; 5 transition for each raster scan
position. 7o3/2_3/2/70,the1/2-3/2 = 5.05.

Pos.(") Tosje—3/2 GiTo3/2-3/2} Tosj2—3/2 9iTo3/2-3/2}

943.06 4.95 0.32 1.64 0.36
94494 5.01 0.32 1.65 0.35
946.81 4.13 0.36 1.46 0.39
948.69 4.37 0.35 1.51 0.38
950.56  5.15 0.31 1.68 0.35
952.44 4381 0.33 1.61 0.36
954.31 4.56 0.34 1.55 0.37
956.19  5.23 0.31 1.69 0.34
958.06 5.10 0.31 1.67 0.35
959.94 4.69 0.33 1.58 0.37
961.88 4.84 0.33 1.61 0.36
963.75 4.40 0.35 1.52 0.38
965.63 2.88 0.46 1.13 0.48
967.50 2.36 0.51 0.96 0.53
969.38 1.07 0.71 0.49 0.72
971.25 1.40 0.65 0.62 0.66
973.13 1.63 0.61 0.71 0.62
975.00 1.29 0.67 0.58 0.68

As such, a wavelength direction pixel shift vector was imposed, determined from the
centroid positions of the well separated 2-1 and 1-2 multiplet components. It can
be seen from fig. 2.12 that beyond the limb, at a height of around 967.50 arc sec,
the centroids are shifted to the blue indicative of upflows along the line-of-sight of
~ 20 km/s. The onset of this shift is beyond the visible limb (959.6 arc sec) and the
inner edge of the C 111 emitting layer (~ 962 arc sec) and coincides with the point at
which the model ratios (fig. 2.16b — see sec. 2.4.1) begin to deviate from the observed
ones. If this is the case then the scattered light — which is a whole disk integrated
effect — has a blue shift relative to the limb observations of ~ 20 km/s. This is in
contrast to observations of emission at TR temperatures which show that downflows

with similar speeds are dominant on the disk (Athay and Holzer, 1982; Brekke et al.,
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Figure 2.11: Integrated line fluxes for the C 11 2s2p° P, — 2p®3 P, line at 1175.711 A. Ordinate
scale as in fig. 2.9a.

1997; Chae et al., 1998).

An alternative explanation follows if the signals at such heights are in fact true.
At heights above 967 arc sec the fluxes imply smaller column densities than those
on disk since the intensity is proportional to the upper level column density (see
eq. 2.15). However, the ratios suggest that the column densities at such heights are
comparable with those on disk, since the ratios follow the optical depth variation
which is determined by that of the lower level column density (see eq. 2.16). These
seemingly contradictory implications are reconciled if the filling factor changes with
height. That is, if there are structures above 964 arc sec which are unresolved in
observations. In order to settle this issue the expected contribution of scattered light
must be carefully considered (see chap 6).

The C 11 ratios (fig. 2.9b) differ from those of C 111. On disk their value is markedly
different to the optically thin value and on approaching and crossing the limb the ratio

changes little. The reason for this is that the C 11 line optical depths are greater than 1



04

60

40—

Centroid pixel position

20— -

0 I I I I | . . . . | . . . . |

0 5 10 15 20
Raster index

Figure 2.12: Centroid pixel positions for the C 111 252p® P — 2p?® P multiplet components.

prior to the limb and so light emitted at the inner edge of the layer does not have
a significant probability of escaping the layer along the line-of-sight. In other words,
the layer can only partially be ‘seen’. Thus as the layer thickens with height the
visible portion does not change and so the thickening of the line-of-sight makes little
difference. Upon crossing the inner edge of the emitting layer (at ~ 961 arc sec), as
in the C 111 case, the ratio rises toward the optically thin value. No comment can be

made here on the issue of scattered light due to the large error bars.

2.4.1 Modelling flux ratios on disk

In this chapter stratified atmosphere models are considered. Consequently two dis-
tinct regimes exist, one where the opacity variation is principally determined by the
geometric extension of the line-of-sight and another where the density fall off with

height is determinate. Two models are constructed: the first describes the former
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regime and thus deals purely with the observations up to the inner edge of the emit-
ting layer situated a few arc sec above the limb and is termed the inner model; the
second describes the latter regime and thus regions above the emitting layer edge and
is termed the outer model.

Following Doyle & McWhirter (1980 — hereafter referred to as DM), the inner
model is made up of a spherical shell of constant density. In this picture the optical
depth is proportional to 1/cosf where 6 is 0 at disk centre and /2 at the inner edge
of the emitting layer. Specifically 7o = 7 4. X d/cosfl where 1y 4. is the optical depth
at disk centre. 0 = 1 before the visible limb and 2 beyond it, and accounts for the
doubling in length of the line-of-sight at the limb since the emitting layer on the far
side of the sun may be viewed beyond this point.

Using this expression for optical depth, models of the flux ratios for the C 11 and
C 111 ratios shown in figs 2.9b and 2.10b, were calculated using equation 2.22. The
fit to the C 111 ratios, shown in fig. 2.13(a), reveals a pointing error of ~ 3.4 arc sec.
This is consistent with the positional error in SUMER which is ~ 10 arc sec. The fit
to the C 11 fit is shown in fig. 2.14. Also shown are the results obtained using g{7o}
rather than g{7}. The former quantity was used by DM and its use is discussed in
sec. 2.6.

2.4.2 Modelling flux ratios beyond the limb

It is expected that beyond the limb the opacity variation will be determined by the
fall off of density. The model thus far is of a static stratified atmosphere. In such
an atmosphere there is both energy and pressure balance and through consideration
of these, the temperature and electron density versus height may be determined.
Therefore emission following the G(T,) function' with a TR layer as described above
is considered. T, and N, follow the VAL quiet sun atmosphere model. The optical
depth for a given height, h, above the surface, is then

1The G(T.) function describes the emission from a particular transition as a function of electron
temperature.
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Figure 2.13: Observed branching line intensity ratios versus raster position in arc sec relative to
the disk centre for the C 111 252p 3P - 2p® 3P (1175 A) multiplet component ratios 1(2-2) /1(1-2) and
I(0-1)/I(2-1) as in fig. 2.10b. Inner model values using g{7o} (solid line) and g{7o} (dashed line)
are overlaid. The x-axis uses the position for the visible limb (a) from the telemetry and (b) from
an optimised fit of the model to the observed I(2-2)/I(1-2) ratio values.
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Figure 2.14: (a) Calculated intensity ratios for the C 11 2s?p?P — 252p*>2S (1036 A) multiplet
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rh) = a /l  Ni(nyds

= b N(h)Gusi(h)ds (2.40)

l.0.s.

where Gy_;(h) = Gou_i(T.(h)), a and b are constants and [.o0.s. stands for line-of-sight.
Using this and eq. 2.22, the ratio variations for C 11 and C 111 may be modelled. The
results of this model can be seen in figs 2.15a and b which clearly demonstrate that the
model fails completely. The results of the model follow intuitively from consideration
of fig. 1.7 which predicts a very narrow TR of only a few hundred kilometres width.
Thus the ratios, in such a picture, move from thick to thin in less that 1 arc sec. This
failure of the VAL model is not surprising when one considers images such as figs 2.8a
and b which demonstrate that the TR is far from homogeneous.

The failure here does not invalidate the VAL model as such, but, rather, implies
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that the assumption of stratification is ineffective beyond the limb. It is useful to take
account of the extension of the TR into the corona due to structures such as spicules
within retaining the stratified atmosphere picture.

Although in a stratified atmosphere the variation of opacity above the limb is
not principally determined by the geometric variation in the line-of-sight, its length
features significantly in the determination of the optical depth by way of the variation
with height of what is called here the line-of-sight filling factor. The latter is the
number of structures intersected by the line-of-sight. It is possible to handle this
within a stratified model via an appropriate choice of density profile. Two further
models are therefore considered: firstly, following the approach of Kastner and Bhatia
(1992), an emission layer of constant (adjustable) thickness and density is envisaged.
This model is a simple parametric adjustment which does not attempt to capture
anything of the nature of the spicule structures. Nevertheless, it is useful to consider
such a model in order to put the success of any other simple model in context.
Secondly, a layer of density which falls off exponentially with adjustable scale height
is envisaged. That is, the density falls off as Be~*/# for some constants H and B.
This is motivated by the findings of Mariska et al. (1978) who considered models
where the dominant contribution to the EUV signal was due to TR sheaths around
isolated cylindrical Ha spicules. They showed that ‘above the emission peak the
amount of emitting material in the line-of-sight for any spectral line must decrease
exponentially with height with a scale height that depends on temperature’ . This is
identical, in essence if not in approach, to the model of Withbroe & Mariska (1976).

In summary the models considered are
1. Thin TR based on the VAL atmosphere model
2. Spherical shell of constant density
3. Layer of density that falls off exponentially with height

The results of these models are shown in figs 2.16a and b from which it is clear that
both models 2 and 3 are much more effective than the VAL model. Both capture

qualitatively the ratio variation as it increases toward the optically thin limit, with
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Figure 2.16: Observed branching line intensity ratios versus raster position in arc sec relative to
the disk centre for the (a) C 111(3/2-1/2)/I(1/2-1/2) ratio as in fig. 2.15a and (b) C 111 I(2-2)/1(1-2)
ratio as in fig. 2.15b. The results of all three models are overlaid. The solid line curves show the
{70} based results and the dashed line shows the g{70} based results. The off-limb models are
numbered corresponding to the specification in sec. 2.4.2. The best fit in each case is achieved with
the exponential density model and using g{7o}.
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the latter model being the most effective in this regard. Both verify the intuitive
expectation that the ratio should return to the optically thin value at large heights.

The inner model was optimised for both the optical depth at disk centre and the
position of the visible limb. The outer models were optimised for the layer thickness
in the constant density case and scale height in the exponential case. The models
begin at the inner edge of the emitting layer which is estimated from the height
corresponding to the temperature of the peak of the G(7,) function, obtained from
the VAL model. The optical depth at this height is chosen to be consistent with the
inner model. The optimised disk centre optical depths were 0.643 for the C 11 3/2-1/2
line and 0.156 for the C 111 2-2 line respectively. The optimised thickness in model 2
was 5 arc sec for both C 11 and C 111 and the scale heights obtained for model 3
were 1.3 arc sec and 1.4 arc sec respectively, equivalent to 942 km and 1015 km.
These are smaller than, but comparable to, those suggested by Mariska et al. (1978)
(~ 1.5 arc sec) and decrease with decreasing temperature of line formation. These
deduced disk centre optical depths allow the spectral lines of C 11 and C 111 to be
classified according to their optical thickness at disk centre and at the limb. Since
it is the disk centre (perpendicular) optical depth that is used within g{ry/2}, this
classification includes the effect of opacity upon the population structure.

It is interesting to note that the optimised disk centre optical depth for the C 111 2—
2 line using g{70} is 0.069 which compares with a value of 0.068 obtained by DM using
the same method applied to Skylab data.

2.5 Spectral line classification

It is useful to classify spectral lines according to the influence of opacity on both
emergent fluxes and on level populations. Such a classification will in general be
dependent upon position and time but in the first instance it is useful to consider the
quiet sun at disk centre as representative. This classification is pertinent to differential
emission measure (DEM) studies which allow the amount of plasma as a function of
electron temperature to be deduced directly from measurements of spectral intensities

(Craig & Brown, 1973). Such studies assume optically thin conditions and so using
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the escape probability tools described, opacity modified spectral lines may be rejected
or intensity adjusted for use in DEM studies.

The modification to emergent fluxes is line-of-sight dependent and so the classi-
fication is made according to modifications both at disk centre and at the limb. In
contrast, the effects on the population structure are specified by disk centre (perpen-
dicular) optical depths only. The upper level population density of a spectral line
may be modified directly due to absorption in that same line or indirectly due to
absorption in another line. As such the spectral lines of an ion may grouped into the

following categories:

1. optically thin (t) — emergent fluxes unmodified on-disk and at the limb; popu-

lations unmodified

2. modified thin (mt) — emergent fluxes unmodified on-disk and at the limb; pop-

ulations indirectly modified

3. weakly thin (wt) — emergent fluxes unmodified on-disk but modified at the limb;

populations unmodified

4. modified weakly thin (mwt) — emergent fluxes unmodified on-disk but modified

at the limb; populations indirectly modified

5. modified (m) — emergent fluxes modified on-disk and at the limb; populations
modified

To do this, for each line two numbers are required: the optical depth at disk centre,
To,dc, and the optical depth at the limb, 75;. These may be deduced for every transition
of an ion from just two values, as described in sec. 2.2.1. Consequently only two
numbers are required from which a classification may be obtained for every line.
This was done for lines of C 11 and C 111 using the optical depths extracted from
the OPAC data. A 10% alteration to the Einstein A-coefficient was chosen as the
modification criterion. Since g{7o} < 0.9 for 75 > 0.307 and g{7y/2} < 0.9 for

70 > 0.072 the classification becomes

1. optically thin (t) — 79 < 0.307 at the limb, populations unmodified
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2. modified thin (mt) — 79 < 0.307 at the limb, populations indirectly modified

3. weakly thin (wt) — 70 < 0.072 on disk, 7 > 0.307 at the limb, populations

unmodified

4. modified weakly thin (mwt) — 70 < 0.072 on disk, 7y > 0.307 at the limb,

populations indirectly modified
5. modified (m) — 79 > 0.072 on disk

Direct population modification is evident immediately from the optical depth — 75 >
0.072 on disk. Indirect population modification, however, is only evident from an op-
tically thick population calculation. In this case a 10% modification in the population
was taken as the criterion for modification.

The results for some of the lines of C 11 and C 111 are shown in tables 2.6 and 2.7.

2.6 The use of g{ry} versus g{m}

Also featuring in figs 2.16a and b are the results based on g{7y} rather than g{7}.
To see how they compare, recall eq. 2.7 and use the intermediate value theorem so
that

I = (1/47)AyiNug{To}L (2.41)

where T, is some value of 7y such that 0 < 7y < 75. This approach mimics that of
McWhirter (1965) in the consideration of the absorption factor, described in sec. 2.2.
From this it is evident that the DM analysis requires that 7, replaces rpand g{7}
replaces g{7} . However, a question arises as to the definition of 7y. It can be written
that 7o = A(79)7. For 79 < 1 it can be seen from fig. 2.2 that A ~ 1/2 which is to
say that the mean probability of escape from a layer of optical depth less than unity
is equivalent to the probability of escape from the centre of the layer. However, it

can also be seen from Fig. 2.2 that for optical depths larger than unity, A < 1/2 as



Table 2.6: Characterisation and classification of some spectral lines of C 11 at disk centre.

Line A(A) f To 9(10/2) g(rp) Class
25%2p 2P — 252p? 2D

3/2-5/2 1335.709 0.115 0.628 0.638 0.812 m
1/2-3/2 1334.524 0.128 0.353 0.732 0.887 m
3/2-3/2 1335.665 0.027 0.147 0.842 0.950 m
2522p 2P — 252p? 28

3/2-1/2 1037.012 0.129 0.643 0.634  0.808 m
1/2-1/2 1036.332 0.131 0.330 0.742 0.893 m
2522p 2P — 252p? 2P

3/2-3/2 904.143  0.405 1.760 0.433 0.590 m
1/2-1/2 903.958 0.331 0.727 0.611 0.787 m
3/2-1/2 904.481 0.0798  0.347 0.734  0.888 m
1/2-3/2 903.620 0.163 0.358 0.730 0.885 m
2522p 2P — 25235 28

3/2-1/2 858.560  0.00615 0.0254  0.956 0.991 mwt
1/2-1/2 858.089  0.00404 0.00843 0.982 0.997 t
2522p 2P — 25?3d D

3/2-5/2 687.346  0.282 0.932 0.565 0.740 m
1/2-3/2 687.051  0.270 0.451 0.694  0.859 m
3/2-3/2 687.353  0.025 0.0826  0.893 0972 m
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Table 2.7: Characterisation and classification of some spectral lines of C 111 at disk centre.

Line A(A) f To g{m/2} g{mn} Class
252p 3P — 2p* 3P

2-2 1175.711 0.221  0.156 0.836 0.947 m
1-1 1175.590 0.0713 0.0286 0.9521  0.990 mwt
2-1 1176.370 0.0715 0.0505 0.925 0.983 mwt
1-0 1175.987 0.0913 0.0366  0.942 0.987 wt
1-2 1174.933 0.1176 0.0471  0.929 0.984 mwt
0-1 1175.263 0.2792 0.0393  0.938 0.987 mwt
252p 3P — 2535 38

2-1 538.312 0.031  0.0100 0.979 0.997 wt
1-1 538.149  0.031  0.00569 0.987 0.998

0-1 538.075  0.031  0.00200 0.995 1.000

252p 3P — 253d 3D

2-3 459.627  0.434 0.120 0.862 0.959 m
1-2 459.514 0.394 0.0617 0.914 0.979 wt
0-1 459.466  0.525  0.0289  0.951 0.990 wt
2-2 459.633 0.063 0.0174  0.968 0.994 wt
1-1 459.516  0.100 0.0157  0.970 0.995 wt
2-1 459.635  0.0042 0.00116 0.997 1.000 wt
25215 —252p 1P

0-1 977.020 0.746  0.665 0.628 0.802 m
25218 —2s3p 1P

0-1 386.203  0.220 0.0775  0.898 0973 m

252 1S — 2s4p 1P
0-1 310.170  0.016  0.00453 0.989 0.999 t
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expected since for layers of optical depth greater than 1 not all of the layer is ‘seen’.

The implication for the optical depth deduction from this is that

7__0,l1—’u — 7_0,l1—u A(To,ll—u)
7__0,l2—u TO,lz—u A(7-0,lg—u)

# constant (2.42)

and the use of g{7} instead of g{7y} is inappropriate for optical depths greater than 1.

2.7 Concluding remarks

Opacity presents a sizeable problem in modelling and understanding spectral emission
from optically thick plasmas. In principle the problem demands the full solution of
the coupled non-linear sets of equations of radiative transfer and statistical balance
(egs 2.1 and 2.2). The escape probability quantities, g{ro} (eq. 2.17) and g{7/2}
(eq. 2.39) — both purely functions of single optical depths — provide a simple route to
linearising and decoupling the equations based on a number of assumptions. These
assumptions are that the density is constant in space and that the source function
(ju/ky) is constant with respect to both space and frequency. Implicit within the latter
assumption is that spectral line profiles are Gaussian, that frequency redistribution
is complete and there is no line blending. The validity of g{7y/2} also requires the
plasma geometry to be that of a semi-infinite plane parallel slab. The simplicity of
this approach allows for the deduction of spectral line optical depths directly from
observations of branching line ratios and the extrapolation to all other lines of the ion
in question. In addition, when coupled with simple atmosphere models it is possible
to extract plasma parameters such as density scale heights and disk centre optical
depths. The latter are required to assess the influence of opacity upon the population
structure and thus lines have been classified according to line-of-sight attenuation and
the modification to the population densities of the levels from which they stem.

It is clear that the escape probability techniques, coupled with the exponential
density model, are effective in modelling the observed branching ratio variations in
the lines of both C 11 and C 111. However, consideration of the observed fluxes of the
C 11 2s2p° P, — 2p*3 P, line at 1175.711 A paints a different picture. These are shown
in fig. 2.17 with the predicted fluxes for the exponential density model overlaid. The
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Figure 2.17: Observed fluxes for the C 11 2s2p3P, — 2p?3 P, line (1175.711 A) line with model
fluxes for the exponential density model (model 3) overlaid. The latter were calculated via eq. 2.43
and were scaled to match the observed points at 950.212 arc sec.

model fluxes were calculated using

] ~ T()g{T()} (243)

Eq. 2.43 follows immediately from eq. 2.15 in the constant density case since (N, Azx) /7
= const. It will be shown in chapter 3 that this also holds for the variable density
case. It can be seen from fig. 2.17 that the model deviates markedly from the observed
fluxes at the limb. This implies an overestimate in column density in the vicinity of
the limb whereas fit to the ratios (fig. 2.16b) suggest that the model column den-
sities are accurate in this region. In contrast, the fit to the fluxes at heights above
~ 970 arc sec is good whereas the fit to the ratios at these heights implies again an
overestimation of column density.

Evidently there is a breakdown in the assumptions mentioned above in these
regions. This can also be seen in table 2.1 where there are no optical depths extracted
at heights 958.06 and 959.94 arc sec.
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The good comparison to the ratios and fluxes on disk and in regions beyond the
limb inspires confidence in the techniques but the real implications of making the
assumptions listed above are unclear and consequently such techniques have so far
only been considered as a useful approximation. In the subsequent chapters each of

the assumptions listed will be considered and the discrepancies in the model will be
addressed.



Chapter 3

The extended escape probability
approach: the effect of a variable

source function

Escape probability techniques for modelling and interpreting spectral emission from
optically thick plasmas are potentially very useful. If they can be shown to be valid for
a particular set of circumstances then the equations of radiative transfer and statistical
balance are naturally linearised and decoupled. This comparative simplicity that
escape probability methods introduce is desirable if they are to be used for studying
such complex plasmas as those in the chromosphere and TR where there is much
detailed structure and flow.

It is clear, however, that the expressions and methods presented thus far are in-
sufficient to completely describe the SOHO-SUMER limb observations discussed in
sec 2.3 and 2.4. When coupled with simple atmosphere models the line-of-sight aver-
aged escape probability (g{7o}) is effective in modelling the opacity sensitive C 11 and
C 111 branching ratios but is ineffective in regard to the observed fluxes. Departures of
modelled from observed values occurred at and beyond the limb. These discrepancies
must be due to the assumptions within the escape probability expressions and/or the

atmosphere model. These assumptions relate to

1. variation of the source function

69
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2. atmospheric structure
3. instrumental effects

In order to develop the escape probability methods it is important to consider each
of the underlying assumptions to detect sources of error and to determine regimes of
validity. Item 1 above incorporates variations of the source function with respect to
both space and frequency due to absorption, scattering, line blending and flow. In this
chapter, the variation of the source function with respect to space only is considered.
In the subsequent chapters the frequency dependence of the source function will be

addressed as well as items 2 and 3 above.

3.1 The source function

The source function, S,(x), is the ratio at x of the emissivity (emission coefficient)

to the opacity (absorption coefficient) and is therefore given by

5,09 = 20 (3.1)

ﬂQ_VQ Pe(v) Ny(x)
Wy € pa(v) Ni(x)

The variation of S,(x) in space follows that of N, (x)/N;(x). In optically thin condi-

(3.2)

tions this ratio is dependent on electron temperature and density but in thick con-
ditions it is also influenced by opacity since photo-absorption will generally enhance
N, and deplete N;.

Following the implications of fig. 2.15, the VAL atmosphere is not considered
to be an appropriate model in regard to the C 11 and C 111 emission. However,
envisaged here are C 11 and C 111 emission layers that comprise of TR, sheaths around
spicule-like structures and the VAL atmosphere model is adopted to represent each
sheath. In optically thin conditions, the emission in a line versus temperature is
described by the G(T,) function (see sec. 2.4.2). G(T,) functions versus 7T, are shown
in fig. 3.1 for the C 11 2s?2p2Py;» — 252p*2P)» line at 904.143 A and the C 111
252p° Py - 2p?3P, line at 1175.711 A. The temperature range where these functions



71

2.0x1079 .

1.5x10" 9

a(T)

1.0x10"9

5.0x107 10

Figure 3.1: G(T.) functions for the C 11 2522p2P; 5 — 252p>2P; 5 line at 904.143 A (solid line)
and the C 111 252p3 P, - 2p?3 P, line at 1175.711 A (dotted line).

are non-negligible corresponds to a very narrow region in the VAL model and thus
the sheaths predicted by this model are very thin. However, the electron density also
varies rapidly over such regions and so even though the spatial extent of each sheath
is small, the variation of electron density within them is significant. This is illustrated
in figs 3.2a and b which show G(7T,(N.)) x N, versus N, for both C 11 and C 111. These
functions are related to the optically thin contribution functions and are indicative of
the degree of spectral emission as a function of electron density. It is evident from
these that the electron density varies significantly over the region of line formation.
Figs 3.3a and b show optically thin population density ratios versus electron density
for C 11 252p*2 P35 /25*2p® Py and C 111 2p?® P, /2s2p3 P, with the G(T.(N,)) x N,
functions of figs 3.2a and b overlaid. From these it is clear that the ratios (and thus
also the source function in each case) vary by several orders of magnitude over the
region of line formation.

Consider a point in the emitting layer for either C 11 and C 111 and consider a
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Figure 3.2: G(T.(N.)) x N, versus N, on a log-log scale for (a) the C 11 25*2p? P35 — 252p® 2Py 5
line at 904.143 A and (b) the C 111 252p3P5 - 2p?3 P, line at 1175.711 A. T,(N,) follows from the
VAL atmosphere model. These functions are related to the optically thin contribution functions.
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Figure 3.3: Optically thin population density ratios versus electron density on a log-log scale for
(a) C 11 252p*2 Py 5 /25*2p2 Py 5 and (b) C 111 2p*3 P, /252p®P;. These ratios are indicative of the
dependence of the corresponding source functions upon electron density. The dotted lines correspond
to G(Te(N.)) x N, as in figs 3.2a and b, scaled to fit the plot in order to indicate the optically thin
region of line formation. In both the C 11 and C 111 cases the population ratios vary several orders
of magnitude over the region of line formation.
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ray from that point leading out of the plasma. This ray will in general intersect
many structures with sheaths as described. Consequently the source function will
oscillate with respect to position along the ray. However, it will not, in optically
thin circumstances, vary with position along the length of the spicule-like structures.
Since the length of these structures is in general much larger than the thickness of
the surrounding sheaths, the dependence of the source function on electron density
is ignored here. Rather it is assumed that the population structure throughout the
sheath is represented by one (T, N,) pair, namely the temperature corresponding to
the peak of the G(T,) function and the density at this temperature implied by the
VAL model. This assumption seems severe but will be justified from observations in
chapter 6.

Making this assumption enables the examination, within an escape probability
picture, of the variation of the source function due to photo-absorption. In other
words, this assumption allows focus to be made on the effect of scattering into the

line-of-sight. For this eqs 2.7 and 2.8 must be revisited.

3.2 The spatially resolved absorption factor

3.2.1 g{mn} as a function of space

The picture considered here in regard to the effect of opacity upon the populations
structure, is that of a semi-infinite plane-parallel slab. Within such a plasma the
population structure will in general be dependent on height within the layer. The
absorption factor expression developed in chapter 2, namely g{7,}, predicts this even
though this quantity itself was derived assuming that both the upper and lower level
population densities are constant — i.e. that the population structure is independent
of spatial position. By symmetry g{7o} may be written as a function of space. Con-
sider absorption at the point z; in a slab of thickness D, due to the portion of the

emitting layer defined by 0 < x < xy. The corresponding absorption factor is
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%% O:o e~ [exp {—7'0_ (xo)e_“2} -

{7'0_(330)@_“2} E; {T()_(xo)e_u2}]du

9{m (z)} =

= ol (@) (33)
where
7o (%0) = KoZo (3.4)

A similar result follows for the portion of the emitting layer defined by zo < x < D

giving

{m0/2} = 5 ({7 (20)} + {7 (20)}) (3.5)

DN | =

where
7o (w0) = Ko(D — o) (3.6)

It follows therefore that a spatially dependent absorption factor, G(m,z), may be
defined as

Gm,2) = 5 ({75 (@) + iy (@)}) (37)

Fig. 3.4 shows G(m, z) versus 7y for z = 0 and x = D/2 from which it is clear that
G (70, x) is indeed spatially dependent. This illustrates that for 7y # 0 the population
structure differs at layer edge compared to layer centre and thus the ratio of upper to
lower level population density varies throughout the layer. This in turn violates the

constant density assumption that underpins the G(7y, z) expression.

3.2.2 Inclusion of variable density in the absorption factor
expression
For G(79, z) to be valid both the upper and lower level population densities must be

constant. If this assumption is not made then the spatially resolved absorption factor

is obtained.
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Figure 3.4: G(r0,z) versus 7 for z = 0 (solid line) and = = D/2 (dotted line).

For a stratified atmosphere it may be written that N; = N;(z). The probability,
dT,, that a photon of frequency v emitted at point x in the layer will propagate a

distance dl at an angle 6 to the z-axis is
dT,(x,0,dl) = exp(—k,(x)dl) (3.8)

= exp(—ky(x)dz/cosh) (3.9)

The probability that the photon will propagate a further distance dl is
dT,(z,0,2dz/cosl) = exp(—k,(z)dz/cosl) x exp(—k,(z + dz)dzx/cosfd)  (3.10)

= exp(—[k,(x) + Ky, (z + dz)|dx /cosh) (3.11)

Following this, the probability, 7,,, that a photon of frequency v emitted at the point
x in the layer will propagate a distance [ at an angle # to the x-axis is

1 o

T,(z,0,1) = exp (—@ )

li,,(m’)dl") (3.12)
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where 1 = x + lcosf.

The intensity, dI, at x = (g,0) due to the volume element dV is
Ju(r) { }
1, = — L
dl,(x) ‘r_XPexp /r—>xl€ (r)dly dV
1 Jv(2) i o "N g
= I,(xo) = E/V// 2 eacp{—x/zlc Ky(z")dz' y dV
_Lopemp e oo gy(x) B N
_ E/ [/0 / 12 exp{ 5/ /ﬂ,,(:c)dx}ldldx
+ / / {—é / ' /ﬁu(x’)dx'}ldldx] d6
zo
— 1 ¢ o A
= 3 [/0 Ju(z)Ey {/z Ky (z')dx }dx
D T
+/ Ju(z)Eq {/ /{,,(x')dx'}dx] (3.13)

e g [ o0 [ i@ ([ st
+ /w (7) {/ (:U')da:'}dx]dy (3.14)

Using the relation between j,(z) and k,(x) specified in eq. 2.32, and considering

Thus, from eq. 2.6,

A(T(),,Io) =1 -

purely Doppler broadened profiles, this becomes

A(ro,m9) =1 — %xz((ﬂfo)) /6_2“2 [/Owo Ny(z)koEr {6“27'0(33,x0)} dx
+ / I{OEl e 7'0(3:0, )} dx] dv (3.15)

Eq. 3.15 is the absorption factor at the point zy in a semi-infinite plane-parallel slab.
No assumption is made here about the density, nor the variation of the source function
with respect to space. This expression reintroduces nonlinearity and coupling to the
radiative transfer equations. Therefore it must be solved iteratively.

The absorption factor has a functional dependence on the optical depth quantities

To(z1, z2) defined as

Z2

To(w1,72) = Kso/ N(z)dx (3.16)

z1
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However, for a particular lower level population density distribution, the absorption
factor at the point z, is prescribed by the total optical depth, 7o = 74(0, D), and so
is denoted A(7y, xo)-

3.2.3 Verification of the A result

Eq. 3.15 may be checked by considering the case where both N, and N; are constant
in space. In this case, A(r, D/2) = g{m0/2}, viz.
2 N,

00 D/2
Ao, DJ2) = 1-— 2\/_NN/@0/ e [ By {roN(D/2 = x)e ' } dadu

Niko [ _yu [DI2 [oo elroNie™
=1—\/_/e“/ /fdzdxdu
m J—o0 0 T

N, o0 ) [ D2 1 lkoNje=” o rD/2 lkoNje™”
= - Dtk / 2 / / C dedl+ / /  dudil| du
VT ) o Jo l p/2Jo l

N, o0 . | rD/2 —u2 © D broNie™*
1 zf*ﬁo/ o 2u / elroNie dl+/ 2 | du
VT ) 0 o2 |

2
Nikg [® _52 eProNie™" /2 1 D
= 1- S —F N, d
NZ3 fooe koN;e— 4’ + koNje™ w 2 1 {KO e } “
= L/OO e [exp{—ﬁe 2} _DNeg {TO — H du
VT ) 2 2
= g{n/2} (3.17)

3.3 The assumption of constant source function

The results discussed above provide a route to obtaining an optically thick upper level
population distribution via calculation of the spatially resolved absorption factor,
A(70, o) (eq. 3.15). Using this upper level population distribution, optically thick
emergent fluxes may then be calculated via

= %AH | Nu(s)gto(s)}ds (3.18)
Thus it is possibly to assess directly the implications of assuming that the source

function is constant in space.
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The impact of this assumption is profound. If it is made, then eqs 2.17 and 2.38
(i.e. g{m} and g{7y/2}) may be extended into the variable density case as follows:
consider emission along a line-of-sight of length L. If an element of distance along

this line-of-sight is denoted ds then eq. 3.18 may be written as

I~ / (5)g{m0(s)}ds (3.19)
with
To(s) = Kio/ Ny(s")ds' (3.20)
0
Since it is assumed that the source function is constant, it may be written that
Nu(s)
= R = const 3.21
If N, and N, are defined as
N - OL Ny(s)ds
“ L
N, = fOL Ni(s)ds
L
(3.22)
then it follows that
N,  Nu(s)
= =R 3.23
Nl Nl(s) ( )
It is useful to define 7)(s) as follows:
Js Ni(s')ds'
= =2 /7 3.24
() s 324
dn Ni(s)
= ds N Nl
— N, d
= Ny(s)ds = N, Jl\(;) ds = N, dst

Therefore

L _ _
I ~ /0 Nug{rioNm}dn
~ Nyg{mo} (3.25)
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It may also be shown that g{m} is valid if the source function is constant with

respect to space. As before

dl, = v (x) exp {— /x—>0 /f,,(x')dx'} dv (3.26)

and

I, = %/V//df,, (3.27)

Consider the intensity, I, due to the portion of the emitting layer defined by
0 < x < xg. This is given by

= 1 7 rzo oojy(x) zo . N
=[] = ea:p{ / mu(x)dxx}ldldxdé (3.28)

It is convenient to re-write this in spherical polar coordinates:

_ w/2 rxo/cosl 7"6050
I = / / / jv(r cosf) 0039 / )dz b r2sinbdrddde
ar " cost

w/2 [@o/cosd 2 N 1 7 cosf
= 5 / / 0 okge ® _Nl(r cosf)exp { [{V(x)dx} sinOdrdo
0 0

N, cost Jo
(3.29)
where
(] 21/3
= - 3.30
= (3.30)
Defining s as
YO Ny(z)dz
s(r cosf) = Jo" Nu(z)d (3.31)
Zo
it then follows that
_ 1 fn/2 gz _ Nie=* ) sind
I; = —/ /00/{06_“2Nuexp _fohe s kil dsdf
2 Jo 0 cost) cost)
1N, /2 /i()]vlacoe_“2
= —= 01— - 5| df
QNIJ/) s l e:rp{ cost
1N, T2 m/2 Nizoe ™’
= §ﬁla [—00590 —/0 sinQexp{—%H do




81

1 Nu 1 N —u?
= éﬁla [1 -/ pexp{—ﬁoleoe t} dt]
1N, N
= §ﬁl0 [1 — EQKOle()e 2]
_ O 2
1N, exp s Ko Njxoe ™t} _ 0 ] _
= §ﬁla 1+ { . } X —i—/-coNlacoe_“z/l 76%P {mOleoe_“2t} dt
1Nu — —u? — —u? —_—u?
= iﬁla [1 —erp{—-mo eV }+1e VU E{r,e }] (3.32)
where
Zo
T, = lfo/ Ny(z)dx
0
D
T zl-co/ Ny(z)dx
Zo
Therefore,

1 1 00

—_ _ ) 2 2 2
g{n}t = §_m _ooe [6$p{—70 e “t—me Efne }] (3.33)

An analogous result exists for g* {75} and thus

A(ro,20) = (3{r5 } + 3{7'}) /2 = G(70,70) (3.34)

3.4 The spatially resolved population calculation

Shown in figs 3.5 and 3.6 are absorption factors versus position for a selection of
spectral lines of C 11 corresponding to three sets of optical depths. Since the absorp-
tion factors depend upon the optical depth rather than the geometrical thickness of
the model plasma, and since plots are shown for three sets of optical depths, the
x-axis is labelled position indezx. This relates to the computational grid and is equiv-
alent to the geometric position in arbitrary units. The first step in their calculation
is choosing a lower level population density distribution. This distribution describes
the spatial variation of the lower level population densities of the optically thick lines.
As discussed earlier, only lines whose lower levels are metastable are considered to
be potentially thick and these levels are negligibly affected by opacity for the moder-

ate optical depths considered here. Consequently the lower level population density
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distributions remain constant throughout the calculation. From these, the optical
depths, 79(z1, z2) may be calculated for each (z1, z5) pair, and these also remain con-
stant throughout the calculation. An initial guess for N, (z) is then required. This
is taken to be either the optically thin value — simply a multiple of Ny(x) for each
line — or the output of a previous iteration. However, any initial guess is valid (in
principle) providing that convergence is subsequently achieved from it. From these
A(7g,z) may be calculated for every line at each = via eq. 3.15. Then at each point
the A’s may be used to modify the Einstein A-coefficients in the statistical balance
equations to obtain the optically thick population structure at each point in the layer.
From this the optically thick upper level population distributions may be assembled

via the lower level distributions which, as stated above, are unchanged.

3.5 The effect of an opacity modified source func-

tion upon the absorption factor

Inspection of eq. 3.15 reveals that it is not so much the value of the source func-
tion at a particular point that is important but rather the variation of the source
function throughout the emitting layer. This can be seen by consideration of the
Ni(x0)Ny(x)/Ny(zo) term. It is not the value of N,(z) that matters, nor the ratio
Nu(x)/N,(z) but rather the ratio N,(x)/N,(xo). The calculation is sensitive to this
ratio — a fact that impinges upon its convergence (or otherwise).

Presented below is a brief summary of the characteristics of the absorption factors

of lines of each of the C 11 multiplets containing optically thick lines.

The 1335 A multiplet

The absorption factors of all three of these lines follow the G(7g,x) trend broadly
speaking. The most notable deviation is in the 2s>2p®Py;s — 2s2p*?Dsy/y line at
1335.665 A. This line shares its upper level with the 25°2p% Py — 252p*2Ds)y line
at 1334.524 A but is less optically thick.



83

C I 25%2p %P, — 252p% 2Dy, 1334.524A C I 25%2p %Py, — 252p% 2Dy, 1335.665A
I S B B fEsssss
7 =0.0235
L o b e A
N b N 70:0.098
R e 08 —
r T T=0235 7 r 1
L o 4 L 4
5 T ] 5 [ - ]
T 06 B T 06 A
(s} O
N J 2L = J
c c —_— e
2 I 1 2 I 1
=L ] =L [ e 7,=0.98 1
? 0.4 — % 04l _
3 3
<< F B < = -
0.2 — 0.2 —
0.0 T I O N S S RIS ST 0.0 T I O N S S RIS ST
0 5 10 15 20 25 0 5 10 15 20 25
Position index Position index
2. 2, 2 2 A 2. 2, 2 2, A
C I 25°2p °P,, — 252p® °Dy, 1335.709A CI 25°2p °Py, — 25°3d °D,, 687.346A
or m———————— A or mm—m—r————
F 7,=0.0419 4 r 7,=0.0529 ]
0.8+ — 0.8+ —
5 = i T 7,=0.419 R 5 = w R
T 0.6 — T 0.6 T T=0529
o o 0
[ F B [ = -
c c
o N b o N b
I e PR 1
B 04F - - 2 04 - _
o s B o .
<< F ; B < = -
02 — 02 —
0.0 T I O N S S RIS ST 0.0 T I O N S S RIS ST
0 5 10 15 20 25 0 5 10 15 20 25
Position index Position index
C I 2s°2p °P,, — 25°3d “D,, 687.051A C Il 2s°2p °P,, — 25°3d “D,, 687.353A
L LS S A 1.0 g
L 7 =0.0256 L -
o 7,=0.046
0.8 e 0.8 -
[ T T=0256 | [ ]
L 0 4 L - - 4
5 | ] 5 |
T 0.6 B T 0.6 =046
S S
[ F B [ = -
c c
o N b o N b
el 1E *
? 0.4 — ? 0.4 =
2 2
<< F B < = -
0.2 S E 0.2 E
0.0 T I O N S S RIS ST 0.0 T I O N S S RIS ST
0 5 10 15 20 25 0 5 10 15 20 25
Position index Position index

Figure 3.5: Absorption factors versus position for selected lines of C 11 corresponding to three sets
of optical depths. Absorption factors are calculated iteratively via eqs 3.15 and 2.8. The solid lines
are A(7o, ) and the dotted lines are G{7,z}.
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The 687 A multiplet

In this case the absorption factors of both the 2s°2p®Ps, — 25°3d>Djs)o line at
687.346 A and the 2s?2p2P; ), — 253d2Djy) line at 687.051 A follow the G(7y, )
trend. At an optical depth of 10 in the control line (the 2s°2p®Pso — 252p® *Py )y
line at 904.143 A) the 2522p2P3y — 25%3d 2Dy line at 687.353 A deviates from the
G(70, ) trend. Again, this line shares its upper level with another (the 687.346 A

line) which is more optically thick.

The 904 A multiplet

In this multiplet the absorption factors of two of the lines follow the G (79, x) trend and
two deviate. The 2s22p2 Py, — 252p? 2Py )5 line at 904.143 A and the 25%2p 2P, —
252p? 2P, , line at 903.958 A are the followers and they are also the most optically
thick of the four lines. The 2s22p2P;/» — 252p*2Py); line at 903.620 A and the
2522p2 Py — 252p? 2P )5 line at 904.481 A are thinner and share upper levels with
the 904.143 A and 903.958 A lines respectively.

The 1036 A multiplet

Both the lines of the 1036 A multiplet share an upper level and both follow the G(ry, z)
trend broadly speaking, one slightly more than the other. The one that deviates most
markedly, namely the 2s22p2P; o — 252p? 25, » line at 1036.332 A, is, once again, the

thinner of the two.

Discussion

In all the C 11 multiplets listed above there is a deviation in A(7m,z) from G (7o, z)
and in each this deviation is due to the distortion of N,(z) with respect to space
(see figs 3.8 — 3.11). A(7p,x9) depends on the integral of N,(z)/Ny(zo) over z.
Consequently A(71o,x¢) > G(70, 7o) at layer centre since the population is most en-
hanced at this point — ie. N,(z)/N,(D/2) < 1 for all z # D/2. Conversely,
A(719,9) < G(719,%9) at the edges since the population is least enhanced at these
points — i.e. N,(z)/N,(0) > 1 and N,(z)/N,(D) > 1 for all z # 0,D. Thus there
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is always a difference between the A(7y, ) and G (7, z) results since there is always
at least some distortion of the upper level population distribution. Furthermore, this
difference increases with optical depth since the distortion also increases with optical
depth.

In each multiplet there are examples where the deviation of A(7, z) from G(r9, z)
is particularly marked, in some instances reversing the G (79, x) versus x trend (e.g. the
903.620 A line in fig. 3.6). In each of these cases the line in question shares its upper
level with another, more optically thick line in the multiplet. In such circumstances
both lines contribute to the deviation in the upper level density distribution due to
reabsorption but more so the thicker line. Thus the upper level distribution is more
significantly enhanced than it would be if just one of the lines were thick. It follows
that for each line the population distribution is more distorted than it would be if
that line were the only thick one and so the A(7,z)’s move further away from the
corresponding G(7y, z)’s. This is true for all the lines stemming from the upper level
in question but the effect is observed mostly in the thinner lines. This is because
it is the thicker lines that make the most significant contribution to the upper level
distortion and so the distortion itself is more consistent with the opacity in the thicker

line than in the thinner ones.

3.6 The validity of G(7, x)

The validity of G(7,x) can be found directly by looking for the region where the
A(7o, ) results agree. This validity is evidently not a simple function of optical
depth unless the line in question makes the dominant contribution to the upper level
population enhancement with respect to all the other lines stemming from that same
upper level.

Fig. 3.7 shows plots of A(7y,x) versus optical depth at layer centre and layer edge
compared with G(r,x). For the C 11 spectral line classification (see table 2.6) the
greatest optical depth was 1.76 for the 25?2p 2Py, — 252p* 2Py, line at 904.143 A.
This is in the regime where the deviation of A(m, D/2) from G(my, D/2) (= g{m0/2})

is minimal. At layer centre A(ry, D/2) is close to being monotonic and is close to
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Figure 3.7: Absorption factors at (a) layer centre (x = D/2) and (b) layer edge (z = 0) versus
optical depth for the constant lower level density model, taken from the plots in figs 3.5 and 3.6.
The *’s, A’s and ¢’s are the absorption factors, A(7o, ), corresponding to the same three sets of
optical depths as in figs 3.5 and 3.6. The dotted lines correspond to G(7g, ).
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G(10,D/2). At the edge, however, the variation of the source function becomes sig-
nificant and G(7p,0) merely provides an upper limit to A(7y,0). This figure shows
G (70, ) to be a good approximation to A(7y,x) up to optical depths of around 0.5.

3.7 The effect upon the density distributions
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Figure 3.8: Upper level population densities versus spatial position for selected levels of C 11. The
solid lines correspond to calculations based on A(7g,x) for the same three sets of optical depths as in
figs 3.5 and 3.6. The dotted lines represent the G(79, ) based calculations. Values are not absolute
but are scaled so that the maximum population density value is unity.

From the above it is clear that the assumption that the source function is constant

in space does not lead to an accurate calculation of the absorption factor, particularly
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Figure 3.9: Upper level population densities versus spatial position for selected lines of C 11. The
solid and dotted lines are as in fig. 3.8. Values are not absolute but are scaled so that the maximum
population density value is unity.

at the edge of the emitting layer. More important, however, is the validity of G (79, z)
in predicting the population distributions. Figs 3.8 and 3.9 show the upper level
population distributions for C 11 for the three optical depths regimes considered in
figs 3.5 and 3.6. In these figures the logarithmic scale hides somewhat the extent of
the difference in the populations calculated using A(7g,x) as compared with those
using G(7y, x). Figs 3.10 and 3.11 shows this difference on a linear scale for the most
optically thick case. It is evident that in these figures there is a difference in the
two and that G(7g, x) is largely ineffective. However, the effect of using A(r, z), and

thus including the variation of the source function due to opacity, is to decrease the
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degree of distortion of the upper level. The absolute value of the average population
modification is not distinctly different between the two calculations but the variation

in space is visibly less in the A(7g, z) case.
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Figure 3.10: Upper level population densities versus spatial position for selected lines of C 11 as in
figs 3.8 and 3.9 but just in the most optically thick case. The linear-linear scale reveals the degree of
distortion of the upper level population density distribution for an optical depth of 10 in the control
line (the C 11 25*2p2 P35 — 252p* 2Py, line at 904.143 A). The solid and dotted lines are as in
figs 3.8 and 3.9.

The subtle, indirect effects that influence lines such as the 2s*2p2P; ;o — 252p® 2Py 5
line at 903.620 A, evident in the absorption factors shown in figs 3.5 and 3.6, do not
appear in the population distributions. This is because these indirect effects influence
lines that share an upper level with lines that are thicker than themselves. These

thicker partners, by virtue of their opacity, have A(7y,z) distributions that follow
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Figure 3.11: Upper level population densities versus spatial position for selected lines of C 11 as
in fig. 3.10.

more closely the G(79, z) based distribution. These thicker lines, by virtue of their
larger oscillator strengths (see eq. 2.14), have a more dominant role in the population

calculation and so the indirect effects upon the absorption factors are minimised.

3.8 The exponential density case

The discussion so far has been restricted to the constant density case. Figures are
shown in appendix A for the exponential density case. For this model the same

conclusions follow.
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3.9 Modelling emergent intensities

With opacity modified upper level population distributions calculated, emergent in-
tensities may be obtained using eq. 3.18. Figs 3.12a and b show limb-brightening
curves for the C 11 2522p2 Py, — 252p? 2Py, line at 904.143 A calculated using eqs 3.18
and 3.25. For both atmosphere models considered in these figures it is clear that even
with a disk centre optical depth of 10 the modified population makes little difference.
Figs 3.13a and b show the same but for the C 11 2s*2p2P; )5 — 252p®?Py)5 line at
903.620 A. This line shares its upper level with the 904.143 A line and is considerably
thinner than the latter. Thus its upper level is modified to a greater extent than its
own optical depth would imply. It would be expected that for this line the population
modification to the intensities would be more severe. However, as with the 904.143 A
line, there is only modest difference even in the most optically thick case. Indeed the
difference is less than that for the 904.143 A line.

Given the degree of distortion of the upper level population distribution evident
in figs 3.10 and 3.11, the similarity between the g{7o(x)} based and g{r} based
calculations is surprising. This is especially so given that the curves in figs 3.12
and 3.13 are scaled to match at disk centre. It is in moving away from disk centre
toward the limb that the two results would be expected to deviate from one another
the most since it is here that the geometric extension of the line-of-sight is minimal.
In the vicinity of the limb the line-of-sight is extended, hence the total population
modification is stretched and thus minimised with respect to the total line-of-sight
optical depth.

To gain insight into this it is useful to generalise g{7o} so that it may be expressed

in the case where the source function is not constant.

3.9.1 The modified g{7}

Following Behringer (1997) the line-of-sight averaged escape probability may be more
generally defined as
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Figure 3.12: Predicted limb-brightening curves for the C 11 25°2p?P3/y — 252p*2P; ) line at
904.143 A calculated using g{7o(z)} with an opacity modified upper level population density distri-
bution (solid lines) and using g{7o} assuming constant source function (dotted lines) via eqs 3.18
and 3.25 respectively. Intensities are calculated in (a) a constant density model and (b) a model with
density that decreases exponentially with height. Each contain three sets of curves corresponding
to disk centre optical depths of 0.1, 1 and 10. The curves are scaled to match at disk centre.
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Figure 3.13: Predicted limb-brightening curves for the C 11 25?2p?P; /5 — 2s2p*>2P; ) line at
903.620 A calculated using g{7o(z)} with an opacity modified upper level population density distri-
bution (solid lines) and using g{7o} assuming constant source function (dotted lines) via eqs 3.18
and 3.25 respectively. (a) a constant density model and (b) a model with density that decreases
exponentially with height. Each contain three sets of curves corresponding to disk centre optical
depths of 0.02, 0.2 and 2. The curves are scaled to match at disk centre.
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Figure 3.14: g{r} and g.{7o} versus 7o at disk centre and the limb shown on a log-log scale. The
solid line shows g{79}. The *’s correspond to g,{7o} at disk centre and the ¢’s correspond to g,{7o}
at the limb. The limb values are closer than the disk centre ones to the g{7o} values. This is because
the distortion of the upper level population density along the line-of-sight is less severe at the limb
than at disk centre since the line-of-sight itself is geometrically extended.

Io.thiclc
g',-[Nu(S), Nl(s); Tu] = W
fl/ fl.o.s Nu(8)¢(ll)€$p{—7'y}d5dy

fl/ fl.o.s NU($)¢(V)d3dV

In general g,[N,(s), Ni(s), 7| has a functional dependence upon the spatially resolved

(3.35)

upper and lower level population densities, N, (s) and N;(s) but for particular choices
of these, g.[Ny($), Ni(s), 7,] may be characterised purely as a function of optical depth,
7o. Consequently g,[N,(s), Ni(s), 7,] may be written as g.{7}.

Since the optically thick emission must first be calculated for g,{7} to be known,
it is not a useful quantity for calculating optically thick emission. However, the
comparison between g{7o} and g,{7o} is insightful and is shown in fig. 3.14. The

two are compared at disk centre and at the limb. As discussed above the difference



96

between g{7y} and g.{7o} is less at the limb than at disk centre. This is because at
the limb the population modification along the line-of-sight is minimised with respect
to its optical depth due to the geometric extension of the line-of-sight in comparison
with that at disk centre. For example, a disk centre optical depth of 1 translates,
in the constant density model, to a limb optical depth of ~ 40. Yet the population
modification along the line-of-sight at both disk centre and the limb is characterised
by the smaller optical depth of 1.

There is an apparent discrepancy between figs 3.12 and 3.13 and fig. 3.14 as there is
a more marked difference between g{7} and g,{7o} than there is between the intensity
calculations based on g{7y} and g{7o(s)}. That is, it appears from figs 3.12 and 3.13
that the emergent fluxes are insensitive to the distortion of the source function due
to opacity, yet fig. 3.14 indicates that the escape probability is sensitive.

The answer to this lies in the denominator of eq. 3.35, namely I°#"  This quan-

tity, given by

Jothin — / /l  N(D()didv (3.36)

is greater in the case in the case where the population modification is included because
the population modification is an enhancement. The optically thick intensity is given
by

Jo-thick

Io.thick — Io.thin x W — Io'thm_r{ﬂ)} (337)

If the optically thin emission in the population modified case is labelled 12" and in
the unmodified case it is labelled I2*" and similarly for the optically thick emission,
then

I:.thin > Is.thin and gr{TO} < g{»,—o} = [ro'thiCk ~ [z'thidc (338)

which is true for optical depths even up to ~ 10.

3.9.2 The perspective of scattering into the line-of-sight

The effect of the enhancement of the upper level — or, in other words, the modifica-

tion to the source function — due to opacity may be viewed from the perspective of
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scattering into as well as out of the line-of-sight. In radiative transfer theory the term
scattering has a very specific meaning. Specifically, a scattering event is one in which
a photon is absorbed and re-emitted before the absorbing atom or ion suffers any col-
lisions leading to excitation, de-excitation or ionisation. If collisions do occur after the
photon is captured and before another photon is emitted then the captured photon
is said to be absorbed. The distinction between these two events is significant when
considering frequency redistribution since scattering leads to a relationship between
the emission and absorption profiles. This was discussed in sec. 1.3.1. Within escape
probability theory such subtleties are not considered since the techniques are invalid
within the optical depth regime where partial frequency redistribution becomes an
important issue (see chapter 6). In the context of escape probability theory, scatter-
ing into the line-of-sight refers to any absorption of a photon that leads to emission
in a line somewhere along a line-of-sight in the direction of that line-of-sight.
Kastner & Bhatia (1992), following the work of Jordan (1967), wrote that the

fraction of photons created, escaping in line 7 is
_)
bi Py,

_ (3.39)
1-— Xi:bz’(l —Pai)(1 = Dri)(1— Prs)

bipe,j =

where pg; is the Izhoton loss probability (Kastner, 1981), Ef,j: ps(7, Z, 7:1)=g{n},
and pr; = ps(7, z, 7 : 0). Py, is the mean probability that a photon emitted anywhere
in the layer will travel to the surface and escape. This was described in chapter 2.
This approach assumes that the emission at a point is characterised by an optically
thin (unmodified) population structure but includes contributions at each point due

to light scattered into the line-of-sight from all other points. Thus

I(o.thick) ~ Néo-thin) (S)A(O'thiCk)g{TO(s) }dS (340)

u—l
l.o.s.

where Aff;f?idc) is A,,; divided by the denominator of eq. 3.39.
In the work presented in sec. 3.9 eq. 3.40 is written differently. Specifically, if at
each point along a line-of-sight an optically thick population structure is obtained via

the solution of eq. 2.6, then the intensity is
I~ [ N{othich) () AL0™ g Lr(s) s (3.41)

l.0.s.
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In this picture emission at a point is characterised by an optically thick population
structure and the only effect of opacity thereafter (excluding, that is, partial frequency
redistribution) is due to scattering out of the line-of-sight. There is no scattering into
the line-of-sight in this picture as the enhancement due to photons absorbed and
re-emitted in line i is taken into account in the I, term in eq. 2.6.

Bhatia & Kastner (1999) calculated optically thick populations iteratively starting
from an optically thin solution and assuming that the source function is constant
throughout the emitting layer. Here a similar approach is taken but for each iteration
the populations are calculated at every point throughout the layer using the resolved
absorption factor — the absorption factor as a function of space — to obtain an optically
thick upper level population distribution. Thus in this work the spatial variation of

the source function is included within the iterative process.

3.10 The implications of a spatially varying source

function upon escape probability techniques

It has been shown above that the modification to the source function due to photo-
absorption has a minimal effect upon the validity of {7y} (via eq. 3.25) in describing
optically thick spectral emission for disk centre optical depths up to (and perhaps
beyond) ~ 10. The viewpoint of scattering into the line-of-sight has been introduced
to separate out the spatial variation of the source function, S, (x), due to opacity from
that due to the more general variation due to the changes in (7, N,) throughout the
region of line formation. It was shown in sec. 3.1 that this variation is likely to be
severe in the C 11 and C 111 emitting layers. The assumption that a single (7, V)
pair is sufficient to describe the C 11 and C 111 emitting layers has thus far not been
justified and will be addressed later in chapter 6. However, consider for the moment

the intensity from a layer of variable source function. Such emission is given by

I~ /OL S(8)g(ko /05 Ny(s")ds")ds (3.42)
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Here it is assumed that the source function, S(s), is independent of frequency. Putting

t(s) = ko /Os Ny(s")ds'

= % = koNi(s) (3.43)
leads to
1~ [t
=1 ~ Ng{}Lfios{m0} (3.44)
where
flos{TO} = /OL NNj((;)) gg{(:o)} dt (345)

fios{70} is in general line-of-sight and optical depth dependent. The validity of mod-
elling branching ratios and limb-brightening curves using eq. 3.25 hinges upon the
nature of the dependence of fi,s{79} on 75 and line-of-sight.

Eq. 3.44 may be written as
I ~ Ng{nlL (3.46)

where N, = N, fros{To} is some representative upper level population density and is
a function of optical depth and line of sight. The optical depth diagnostic described
in sec. 2.1.1 depends upon the cancellation of the density terms in eq. 3.25. The
fact that two lines in an intensity ratio arise from a common upper level is no longer
guarantee that this cancellation occurs. However, since the diagnostic applies to one
line-of-sight at a time, the dependence of fj,s{7o} on line-of-sight is irrelevant.

For the time being it is assumed that fi,s{70} = const. This will be justified in

chapter 6.

3.11 Concluding remarks

The spatially resolved absorption factor, A(7,x), that has been develop here for a

plane parallel stratified atmosphere, provides a route to examining the implications of
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the assumption of constant source function on the validity of the escape probability
technique. In particular, it enables the effect of scattering into the line-of-sight to be
examined in a consistent manner. It is found that the G(7y, ) quantity is generally
ineffective for describing the spatial variation of absorption characteristics in spectral
lines. This deficiency is due to coupling of lines that share a common upper level.
Absorption of photons in an optically thick line will lead to a distortion of the upper
level population distribution of that line. This will in turn influence the emission and
thus also the absorption in that same line and also in other lines stemming from that
same upper level. This coupling influences most markedly lines that share an upper
level with a line that is more optically thick.

This deficiency in the G(79, ) quantity is minimised at layer centre. At an optical
depth of 10 in the control line (the C It 2522p2Py 5 — 252p? 2Py, line at 904.143 A),
G(m9, D/2) and A(7y, D/2) differ by ~ 30%. However, at an optical depth of 1 in
the control line the difference is only a few percent and the two quantities both vary
monotonically with optical depth (see fig. 3.7a). Thus g{7m/2} is appropriate for
describing the modification to the population structure due to opacity for a range of
optical depths. Furthermore only modest scaling of this quantity would extend its
range of validity up to an optical depth of 10 or more. The value for optical depth at
disk centre of the control line deduced in chapter 2 was 1.76. This was the largest of
all the C 11 lines and thus the g{7y/2} is appropriate for the classification of the C 11
spectral lines. The maximum optical depth in the C 111 lines was 0.156 which is well
within the regime where g{7y/2} is valid.

The modified population density distributions do not display such sensitivity to
the coupling effects described above since they are controlled by the strongest, and
thus thickest lines which are the least influenced by these indirect effects. Moreover
the predicted limb brightening curves show less sensitivity. These curves indicate that
for 75 ~ 10 in the control line, scattering into the line-of-sight is non-negligible. At
optical depths less than this the modification to the source function due to opacity
is not manifested in the emergent intensities. This implies an upper limit to the
line-of-sight averaged escape probability, g{7o}, of ~ 75 = 10. This is identical to
the upper limit found by Kastner (1999) based on an intensity/linewidth method to
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deduce optical depths from spectral observations using escape probabilities.



Chapter 4

The effects of spectral line

blending on photo-absorption

In chapter 3 the variation of the source function with respect to space was considered
but in general it is also dependent on frequency. This dependence arises from any
phenomenon that causes the emission and absorption profiles to be shifted and/or
distorted with respect to one another. For example, photon scattering can lead to
distorted emission profiles in the case of partial frequency redistribution. The prob-
ability of absorption (i.e. the opacity) is greatest at line centre but since there may
be a change in direction of propagation in the scattering process, Doppler shifts can
lead to a diffusion of photons toward the line wings. Also if a plasma is exposed to a
radiation field which arises from a region that is moving relative to it, the resultant
emission profiles will be distorted and asymmetric.

Another contributer to frequency dependence is spectral line blending. When two
spectral lines overlap in frequency space, photons from one line may be absorbed by
the other. This leads to an enhancement or deficit in the emergent line intensities
depending on the nature of the overlap. For instance, if one line is thick and the other
thin, then the thin one will be attenuated due to absorption of its photons by the thick
line. Such absorption, however, will enhance the upper level of the thick transition
and thus result in a relative enhancement of the thick line emission. Hence, in this

instance, blending thickens the thin line and thins the thick one. Line shapes are also

102
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influenced by the fact that photo-absorption will no longer be symmetric about line
centre (the term I,¢(v) is not symmetric about vy when there is line blending).

Fig. 2.10a shows an example of line blending in an opacity modified multiplet.
Blending influences both the emission and absorption and so if escape probability
techniques are to be used then account must be taken of blending within the escape
probability and absorption factor expressions.

In this chapter line blending is considered within the escape probability framework.
Spatially resolved quantities are derived as in chapter 3 and are used to calculate
optically thick population distributions and limb-brightening curves in order to assess
the validity of the line-of-sight averaged escape probability in the case of blended

spectral lines.

4.1 Blended escape probabilities

Blending influences the probability of escape in that it increases the number of poten-
tial absorbers. Consider the case of M lines blended together. The monochromatic

transmission factor of a line in the blend is
T,(s1,52) = exp {— S (s, 82)} (4.1)

where T,E")(sl, S9) is the optical depth at frequency v between two points s; and sy of
the n'® line in the blend, i.e.

Té")(sl,SQ) = / . nf)")(s)ds (4.2)

$1

Thus the escape probability is no longer purely a function of the optical depth of one
line. Rather, it is dependent on a set of M optical depths, {Té")}. If it is assumed
that all the lines in the blend have the same width (a reasonable assumption they are

all of the same ion) and define vy, as

y(()i) . V(()n)

Aup (4.3)

Vin =
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then the mean escape probability of a photon emitted in line ¢ at a point s along

some line-of-sight is

SO (o) = 7= [ e emn{ - S e e o @

From this the blended line-of-sight averaged escape probability (formerly g{7}) fol-

lows immediately as

n

1 o
— (&
\/7_1'/00 ZT e u+”1n)2

1— e:vp{ Z —(u+tviy)? }
d

U}, {vin}] = u o (4.5)

Both ¢O {7}, {vim}] and g®@[{7™}, {v;n}] are prescribed by a set of optical depths,
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Figure 4.1: Line-of-sight averaged escape probabilities versus optical depth excluding line blending
(g{mo} — solid line) and including line blending for a selection of spectral lines of C 11 (5 {rp} -
dotted lines). The three cases which deviate most markedly from the unblended result are labelled.

{Té")} and a set of overlap parameters {v;,}. The latter are constants, though they
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may act as variable parameters in an emission model or diagnostic. Furthermore,
the set of optical depths may be related via eq. 2.24 and so the escape probabilities
become prescribed by a single optical depth and a set of optical depth ratios, {Tén) /78}.
Thus gO[{75"}, {vin}] and gO[{75"}, {vin}] become g@{r} and g {7o} and may be
plotted as functions of optical depth. Fig. 4.1 shows g {7} versus optical depth for
a selection of C 11 spectral lines. It is evident from this graph that, as expected,
the unblended result represents an upper limit since blending leads to additional
attenuation due to overlapped components.

This does not negate the statement made above that blending can lead to an
enhancement of a spectral line. Blending will always decrease the probability of
escape but it will also lead to an enhancement of the upper levels of optically thick
lines and thus to an enhancement in emission. The combined effect can be to enhance
or deplete the emergent intensity. Which will be the case may be determined using a

blended absorption factor.

4.2 The blended absorption factor

Photo-absorption at a point in a plasma is influenced by blending in two ways. Firstly,
photons of more than one line may be absorbed. Secondly, those photons may be
absorbed by a number of lines en-route. The blended absorption factor quantities may
be derived following the same reasoning as before but with j{*" and x{(*" replacing

7, and &, where

() 9.2 A7(n)
-(to -(n w 2v, Nu n
4t t):Z]‘S):Zl__O_,{I(/) (4.6)

with
K = I~€(()n)J\fl(n)e_(““”’”"”)2 (4.7)
(n) o, 2
-(tor W 2v n n) —(utvin)?
A IR a9
and

K =3 KM = 3 kU NMe (v (4.9)



These give
_ w® N, @ oo 2 _ p
g 2y =1-— v@Pu
g {7'0/ b= Wl(z) N(Z) o 22 I,¢,dv
with
T IStOt) —n,(,t )acl (tot) E (tot)
I”:H(tot) 1—e +K, T 1{ }
Now
(n) 2 (n)
(tot = U ek
— n u 1
(tot) ) K(n)Nl(n)e_(“"'“m)z
() . (n) .(n)
w N’M - m
= 215 Ny’ o N e (wtuim)
C2 Nl(’b) Z%E_QH—UM)
n Tg
Therefore

( ) (n)
Min_)J_e
o™ N(z) ®

L 1 [e’s} 9

=) - u —u _

g 1m/2y = 1— ; / e ll
{ro/2} IRV 5 78 o—(utvin)?

nTo

('LH"Uin)z

exp {__ ZT n) —(utvin)? }
= Z 7§ (n) —(u—e—'um { Z TOn —(u4vin) } ] du

From this G (1, z) follows as

. 1 i
G (r,2) = 5 (3"} + 375 })
Similarly
. (@) N
AD (10, 30) =1 — Yy
(70, 20) wl(z) N
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(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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with
I, = l / j(tot) ( { / " pltor) (w')dx'}dx+ / 180 (2) B, { / H,(f"t)(fﬂ')dx'}]
T Zo Zo
21/ n) —(u4v. u V.
— 0[ (n) ( )K/E) )e ( +1n {ZTO :E -,'EO +1n) }d$+
Az

/ Zwl VM (wtvin)? {ZTO (20, z)e (@Fvin) }dx] (4.17)
and thus
AD(ry,20) = 1— 2T w® N l E / [/ Z l ™) (2) Ve~ (wrvin)® x

w;

(4.18)

As in the unblended case, the absorption factor, A®)(ry,z,), depends on the upper
level population distribution via the N (z)/N{ (x,) term. In this way the absorption
factor is sensitive to the distortion of the upper level population density distribution
relative to the optically thin one which places a constraint on the effectiveness of the
first order iterative scheme employed here. However, unlike in the emergent flux case
(59{70}), there is also an explicit dependence here upon upper level population den-
sities, N,S”), in both eqgs 4.13 and 4.18. The ratios Né") /Nz(f) are sensitive to opacity
and thus further restricts the range of optical depths for which eq. 4.18 may be calcu-
lated using the method described in chapter 3. Furthermore, eq. 4.13 must now also
be calculated iteratively. However, the purpose of this work is not to develop effec-
tive techniques for solving the equations of radiative transfer and statistical balance
stmultaneously, but rather to examine the optical depth regime within which these
equations may be naturally linearised and de-coupled thus avoiding the need for their

simultaneous solution. Eqs 4.13 and 4.18 are calculable using first order techniques
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to optical depths beyond the point where the simple escape probability expressions
break down. Thus more sophisticated schemes are not necessary here.

Fig. 4.2a shows the C 11 252p®2Dj5/5/25*2p? P, j» population density ratio versus
optical depth, in the blended and unblended cases. These are calculated using eqs 4.13
and 2.39. For this ratio it is clear that the variation with optical depth is more rapid in
the blended case than in the unblended case and this is true for all the C 11 levels. This
is not surprising since, as stated above, blending increases the effect of opacity in a line
due to absorptions by other lines. Fig. 4.2b shows the C 11 252p*2Ds/5/252p? ? D5 o
population density ratio versus 7. This curve also demonstrates the dependence of
upper level populations upon line blending and illustrates the difficulty in calculating
3 {19/2} which depend on such density ratios. These ratios determine the extent
to which absorption in a line is influenced by overlapped components and since they
depend on both optical depth and linewidth, eq. 4.13 must be calculated iteratively.

In fig. 4.3 §(i){70/2} is plotted versus degree of overlap (model line width/observed
line width) for a selection of spectral lines of C 11. This plot corresponds to a single
set of optical depths such that the optical depth in the 2s*2p2Py;y — 2s2p?2P; )y
line at 904.143 A is 3. It is evident from this that blending always leads to a net
decreases in the absorption factor — i.e. it increases the effect of opacity upon the
population structure. However, it is interesting to note that in the 2s?2p 2P3/2 —
2523d 2Dy, line at 687.353 A, blending initially leads to a decrease in 3 {r5/2} but
this ultimately reverses as the degree of overlap increases. The initial decrease in the
absorption factor is due to the increase in absorption of 687.353 A photons by the
2522p? P35 — 25%3d* D55 line at 687.346 A. The influence of the 687.346 A component
on the 687.353 A one through blending is determined by the relative strength of the
two lines which is determined by the Nj/»/Ns/s ratio of the C 11 25*3d*D term. This
ratio is also dependent on the degree of blending. The upturn in the §{7,/2} versus
degree of overlap trend for the 687.353 A line corresponds to the increase of emission
in the 687.353 A line due to the enhancement of the 2s23d D55 level ‘winning’ over
the absorption of photons by the 687.346 A component.

It can be seen in fig. 4.3 that, as expected, the absorption factor only varies in the

cases where there is blending. The indirect effects described above do not influence the
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Figure 4.2: Plots of (a) C 11 2s2p? > Dy 5 /25%2p>P; /5 and (b) C 11 252p® ? D35 /252p > D5 /5 popu-
lation density ratios versus 7. The solid line corresponds to the blended calculation and the dotted
line to the unblended calculation.
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Figure 4.3: 3 {r,/2} versus degree of overlap (model line width/observed line width) for a selec-
tion of spectral lines of C 11. This plot corresponds to a single set of optical depths such that the
optical depth in the 25?2p2P; /5 — 252p? 2Py 5 line at 904.143 A is 3. The variety of line-styles used
are to clarify the distinctions between lines.

unblended lines. This is because g{7y/2} (the unblended quantity) is only dependent
on optical depth. Consequently the indirect influence of blending on the upper level
population densities of unblended lines does not manifest itself. Such indirect effects
are expected to be present when the spatial dependence of the absorption factor is

considered (see sec. 4.4).
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4.3 Modelling emergent intensities with blending

included

If it is assumed that the source function is constant, or if an optically thick upper
level population distribution has been obtained using eq. 4.18, emergent intensities
may be calculated in the same way as in sec. 3.9. Blending does not increase the
computational complexity of this calculation since neither ¢ {7y} nor g {7y} depend
upon upper level population density ratios. Rather they depend on lower level ones
which are not sensitive to optical depth.

Fig. 4.4 shows limb brightening curves for the C 11 25*2p2P3 ), — 252p* 2Py, line
at 904.143 A and the C 11 2522p2P; , — 252p? 2Py, line at 903.958 A. These curves
are based on eq. 3.25 in both the unblended and blended cases using g{7o} (eq. 2.17)
and g@ {7y} (eq. 4.5) respectively. Though there is still a significant issue of the
variation of the source function to address, it is clear that even for a disk centre optical
depth of ~ 0.1 blending plays a significant role. Given that the indirect population
modification effects seen in chapter 3 influenced the weaker line (the 903.958 A line)
more than the stronger one (the 904.143 A line), the influence of blending might also
be expected to affect the weaker line more. Fig. 4.4b shows, however, that this is
not so. Evidently the low optical depth minimises the effect of blending, since the
blended and unblended escape probabilities converge as 75 — 0.

A further effect of line blending is to produce an asymmetry in the emergent
spectral line profiles. This occurs since overlapped lines are generally displaced in
frequency space from one another. The emergent line profiles may be examined from

eq. 4.5 since

1 l—eacp{—%:ﬂgn)e(“*”m)Q}
I, ~ Ny,—e™

4.1
VT > Tén)e_(“+vin)2 (4.19)

If blending is neglected eq. 4.19 is the same as that used by Doyle et al. (2000) to
study the effects of line broadening due to opacity in spectral lines from the solar TR.
Fig. 4.5a shows the C 11 2522p 2P — 2s2p?2P multiplet at ~ 904 A for a disk centre
optical depth of 1, and a line-of-sight optical depth of 10. The calculation uses eq. 4.19
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Figure 4.4: Predicted limb-brightening curves for (a) the C 11 2s*2p®P; /5 — 252p® 2Py, line at
904.143 A and (b) the C 11 2522p2P; ;5 — 252p? 2Py, line at 903.958 A, calculated using eq. 3.25
excluding line blending (solid lines) and including line blending (dotted lines). Intensities are calcu-
lated in a constant density model. Each graph contains three sets of curves corresponding to disk
centre optical depths of 0.1, 1 and 4. The curves are scaled to match at disk centre.
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each of the lines. Solid and dotted lines as in (a).
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and is contrasted with the unblended case. Fig. 4.5b shows the multiplet envelope
in each case and illustrates a significant difference to the shape of the multiplet as a
whole, especially in the vicinity of the blend. Fig. 4.6 shows in more detail the blended
1/2-1/2 and 3/2-3/2 components. The distortion of the lineshapes is clearly present.

20
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Figure 4.6: Predicted spectral line profiles of the C 11 2s?2p?P — 2s2p?2P 1/2-1/2 and 3/2-
3/2 lines at 903.958 A and 904.143 A respectively, with blending included (solid line) and blending
excluded (dotted line). The vertical lines indicate the rest wavelengths. Note that blending makes
the 1/2-1/2 and 3/2-3/2 components look shifted to the left and right respectively.

Also evident is the further attenuation of the intensity of the 3/2-3/2 component in
the blended case as compared with the unblended calculation. This is due to 3/2-3/2
photons being absorbed by the 1/2-1/2 line. In the 1/2-1/2 case, however, the peak
intensity is greater when blending is included than when it is not. This seems to be
in contradiction to fig. 4.1 which demonstrates that g {7} is maximal when there is
no blending. That is, the attenuation is minimal in the unblended case. This is true

for although the attenuation in the 1/2-1/2 line is increased due to blending with the
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3/2-3/2 line, the upper level population density of the 2s2p* 2P, , level is enhanced
due to absorption of 3/2-3/2 photons in the 1/2-1/2 line. This illustrates the point
made at the beginning of the chapter that under certain circumstances blending can
lead to an increase in emission. Another interesting feature is that the distortion of
the profiles leads to apparent centroid shifts to the blue in the 1/2-1/2 case and to
the red in the 3/2-3/2 case.

4.4 The effect of a variable source function on ab-
sorption

Shown in figs 4.7 and 4.8 are plots of absorption factors versus position for a selection
of spectral lines of C 11 and for three sets of optical depths. These figures are similar to
figs 3.5 and 3.6 but with line blending included. A further difference is that the sets of
optical depths correspond to values in the control line (the 25°2p2Ps;y — 252p*2P;)o
line at 904.143 A as before) of 0.1, 1 and 4 as opposed to 0.1, 1, and 10 in the figures
of chapter 3. As in figs 3.5 and 3.6 the absorption factor calculations are computed
within a constant density atmosphere model. The main features of these graphs may

be summarised as follows:

The 1335 A multiplet

The 2522p?Pyjs — 252p*>2Ds, line at 1335.709 A shows a slight deviation due to
blending with the 2522p2Py/5 — 252p*2 D3, line at 1335.665 A which is more optically
thin. The 1335.665 A line itself displays a significant deviation due to blending with
the 1335.709 A component. The 1335.665 A line is also indirectly modified due to
the 2522p 2P1/2 — 252p? 2D3/2 line at 1334.524 A (see sec. 3.5). The 1334.524 A line
is as before (sec. 3.5) with a slight modification due to indirect effects caused by the
line at 1335.665 A.
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Figure 4.7: Absorption factors with blending included versus position for selected lines of C 11
corresponding to three sets of optical depths. Absorption factors are calculated iteratively via
eqs 4.18 and 2.8. The solid lines are A (7, z) and the dotted lines are G(9 {7y, z}.
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Figure 4.8: Absorption factors with blending included versus position for selected lines of C 11 as
in fig 4.7.
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The 687 A multiplet

The 25%2p2P;;, — 25?3d?Ds); line at 687.346 A shows a slight deviation due to
blending with the 2s?2p2Py/, — 2s23d2Djy), line at 687.353 A. The 2s?2p2P; ), —
25%3d2Djy/y line at 687.051 A shows minor modification due to blending with the
687.346 A line and also moderate modification from indirect effects again due to the
687.346 A component. The line at 687.353 A displays significant deviation due to
blending with the 687.346 A component which is more optically thick. There is also
indirect modification due to the 687.051 A line.

The 904 A multiplet

The 25%2p2P; )5 — 252p? 2Py, line at 903.620 A is, as before (see sec. 3.5), indirectly
modified due to the 2s*2p2P; 5 — 252p? 2Py, line at 904.143 A. The 904.143 A line
shows slight modification due to blending with the 2s?2p®Py;, — 252p*2Py 5 and
25%2p2 Py o — 252p? 2P 5 lines at 903.958 A and 904.481 A respectively. The 904.481 A
component displays slight deviation due to blending with the 904.143 A line and there
is indirect modification due to the 903.958 A component.

The 1036 A multiplet

These lines are not blended together and they do not share upper levels with any of

the above lines. Thus their absorption factors are as before (see sec. 3.5).

Discussion

As in the unblended case, the source function variation manifests itself in eq. 4.18
via the Ny(z)/Ny(zo) term. Thus it is the shape of the N,(x) versus = curve that
comes into play and not the absolute value of N,(z). Blending, however, introduces a
dependence of the integrand of this equation on N (x)/N) (z) where i and j indicate
separate lines in a blend. The effect of this is to decrease the absorption factors
everywhere as compared with G (7, z). This decrease acts to shift the absorption

factor curves downward rather than to distort them further. It is not sufficient,
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Figure 4.9: Absorption factors including line blending at (a) layer centre (x = D/2) and (b) layer
edge (z = 0) versus optical depth for the constant lower level density model, taken from the plots in
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to the three sets of optical depths. The solid line is G(7g, x) and the dotted lines are G (1, z).
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however, to say that blending effectively increases the optical depth, although this is
certainly an effect (see the summation of optical depths in eq. 4.18).

It is clear that the effects of blending are more severe than the indirect effects
on thin lines with thick partners, discussed in chapter 3. Furthermore, blending is
more apt to affect lines that markedly influence the population distribution —i.e. the
stronger (thicker) lines — unlike the indirect effects which mainly alter the absorption

factors of the weaker (thinner) lines.

4.5 The validity of G%(ry, z) in the blended case

It is clear from figs 4.7 and 4.8 that blending decreases the range of optical depths for
which G(7, ) is effective for describing self absorption in spectral lines. Previously
the absorption factors of the strongest and most dominant lines — that is, those that
most significantly influence the population structure calculation — broadly speaking
followed the G(7g,x) versus x trend. Moreover, they were in fairly close agreement
at layer centre (see figs 3.5 and 3.6). With blending included, though the trends still
follow those of G (79, z) (indirectly modified lines excepting), the layer centre values
can be markedly different (see, for example, the 2s*2p?Py), — 252p®?Djy)5 line at
1335.665 A shown in fig. 4.7). Significantly, it is not just the weaker, less important
(with respect to the population calculation) lines that are so affected.

Figs 4.9a and b show the blended absorption factors at layer centre (a) and the
layer edge (b). Unlike the unblended case (see fig. 3.7), at layer centre the absorption
factor can not be considered a monotonic decreasing function of optical depth since it
is line specific. As in the unblended case, at layer centre G (ry, D/2) is effective for
moderate optical depths. However, for significantly blended lines the optical depth
regime where this is true is reduced as compared with the unblended case. At the layer
edge indirect effects come into play and G® (7, 0) (which is identical to G@ (7, D) in
the constant density case) is less effective.

Fig. 4.9a displays a degree of agreement between G (75, D/2) (i.e. §?{r/2}) and
A®(7y, D/2) that is greater than that implied by figs 4.7 and 4.8. In the latter two

figures the G (7, x) values are calculated without iteration. That is, they represent
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Figure 4.10: Upper level population densities versus spatial position for selected lines of C 11. The
solid lines correspond to calculations based on A(® (10, ) for the same three sets of optical depths
as in figs 4.7 and 4.8. The dotted lines represent the G (79, z) based calculations. Values are not
absolute but are scaled so that the maximum population density value is unity.

the initial values of the absorption factor in the iterative process. In general, however,
G (70, ) must be computed iteratively due to its explicit dependence on upper level
population density ratios of overlapped lines. In figs 4.9a and b the G®(ry, ) values
are computed iteratively and are thus closer to the A® (7, z) values. Figs 4.9a and
b are therefore indicative of the influence of the modification of the source function
due to opacity upon absorption factors in the case where blending is included.

The usefulness of the escape probability techniques is that they represent accu-
rate solutions to the radiative transfer and statistical balance equations in a regime in

which these equations naturally linearise and de-couple. Line blending re-introduces
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Figure 4.11: Upper level population densities versus spatial position for selected lines of C 11. The
solid and dotted lines are as in fig. 4.10.

non-linearity into the statistical balance equations via the dependence of the absorp-
tion factor on upper level population density ratios. To perform an iterative process
to calculate G (g, z) therefore compromises the appeal of the absorption factor ap-
proach. Computational simplicity may be restored, however, by simply ignoring this
non-linearity and utilising upper level population densities deduced from an opti-
cally thin calculation thus further restricting the optical depth regime within which
G (1y,2) is effective. In this respect figs 4.7 and 4.8 demonstrate the applicability,
or otherwise, of G#(ry,z) for practical use. In these figures the A® (7, z) curves

often seem to follow the G (7y, z) trends but are shifted downward. If GO (ry, z) is
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calculated iteratively then these downward shifts disappear and the results are simi-
lar to those of chapter 3, with the deviation of A®) (7, z) from G (75, ) minimal at
layer centre and significant at the edge, characterised by the degree of distortion of
the upper level with respect to the lower. However, the fact that blending effectively
increases the optical depth serves to restrict the region of validity of the G@ (7, )
quantity. Nevertheless a spectral line classification that includes the effects of line
blending is possible using §(i){70 /2} providing an iteration process is performed. The
validity of this classification is optical depth and line dependent. For most of the C 11
lines f](i){ﬁ) /2} is effective, as in the unblended case, for disk centre optical depths up

to ~ 1. For the most severely blended lines, however, the restriction is more severe.

4.6 The effect of blending upon the density distri-

butions

Upper level population densities for the C 11 lines in figs 4.7 and 4.8 for the same three
sets of optical depths are shown in figs 4.10 and 4.11. These plots have a logarithmic
scale that masks somewhat the true extent of the distortion of upper levels. Plots of
the same for just the maximum optical depths are shown on a linear scale in figs 4.12
and 4.13.

Increased absorption in blended lines distorts the upper level population density
distributions with respect to the lower ones in a manner that increases with optical
depth. This effect was seen in the unblended case (see sec. 3.7) but is more severe
here since blending serves to increase the radiation field in an overlapped line and
also increases the effective optical depth. Moreover, the dependence upon upper level
density ratios, discussed in sec. 4.4, has a marked effect upon the absorption factors
but does not significantly alter the shape of the upper level population density dis-
tortion. That is, this secondary effect of blending leads to a population modification
which is approximately constant in space. This is significant since it is the extent

of the distortion rather than the absolute value of the modification that determines
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Figure 4.12: Upper level population densities versus spatial position including blending effects,
for selected lines of C 11 as in figs 4.10 and 4.11 but just in the most optically thick case. The solid
and dotted lines are as in figs 4.10 and 4.11. Values are not absolute but are scaled so that the
maximum population density value is unity.

the validity, or otherwise, of the line-of-sight averaged escape probability. The abso-
lute value of the absorption factor is dependent upon these ratios, hence the need to
calculate G (70, x) iteratively. However, line blending only influences the validity of
the line-of-sight averaged escape probability through the increase in effective optical
depth.
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Figure 4.13: Upper level population densities versus spatial position including blending effects,
for selected lines of C 11 as in fig. 4.12.

4.7 The effect of line blending on emergent fluxes

Figs 4.14a and b show predicted limb-brightening curves for the C 11 25*2p2 P55 —
252p® 2Py line at 904.143 A, contrasting the resolved (population modification in-
cluded) calculation with the unresolved (no population modification included) cal-
culation. Line blending is included in both figures via eqs 4.4 and 4.5 respectively.
These figures illustrate that for optical depths up to ~ 4 the modification to the
population density distribution due to opacity, impinges minimally upon the limb-
brightening curves. That is, it is sufficient to assume that the only effect of opacity

is to scatter photons out of the line-of-sight, even when line blending is included, for
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Figure 4.14: Predicted limb-brightening curves for the C 11 25>2p® Py, — 252p®? P35 line at
904.143 A. The solid lines correspond to calculations including line blending and the modifica-
tion to the upper level population density distribution due to opacity using ¢ {7y} and A (ry, z)
(egs 4.4 and 4.18 respectively). The dotted lines correspond to calculations including line blending
and assuming constant source function using {7y} (eq. 4.5). Intensities are calculated in (a) a
constant density model and (b) a model with density that decreases exponentially with height. Each
plot contains three sets of curves corresponding to disk centre optical depths of 0.1, 1 and 4. The
curves are scaled to match at disk centre.
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optical depths in this range.

Figs 4.15a and b show the same as 4.14a and b but here the blended, resolved
calculation is contrasted with the unresolved, unblended one. It is clear from these
figures that blending has a more significant impact on the limb-brightening curves

than the population modification.

4.8 Concluding remarks

From an algebraic perspective, the effects of spectral line blending may be incorpo-
rated easily within the escape probability and absorption factor expressions. However,
blending re-introduces non-linearity into the optically thick statistical balance equa-
tion thus compromising the simplicity of the absorption factor approach. Blending
leads to photons that are emitted in one line being absorbed by another which in turn
leads to a sensitivity of the absorption factor to the ratio of upper level population
densities of overlapped components. These ratios are themselves opacity sensitive.
Consequently blending markedly influences the absorption factors. It does so in two
ways. The first is due to the increase in effective optical depth which may in principle
be characterised by an unblended calculation with a modified optical depth. This ef-
fective optical depth is always larger than the unblended one. The second way is due
to the dependence of the absorption factor on upper level population density ratios
and leads in general to a decrease in the absorption factor. It is, however, largely
independent of spatial position and so does not further distort the resultant upper
level population density distributions and therefore does not impinge on the validity
of the line-of-sight averaged escape probability.

The validity of G®) (1o, ) follows as in chapter 3, and is dominated by the indirect
effects evident in lines that share an upper level with a more optically thick line.
However, this is only true if G& (7, z) is calculated iteratively. If iteration is not
performed then G (7, x) is ineffective for blended lines even for small optical depths.

As in chapter 3, the ¥ {7} quantity (eq. 4.5) is effective for optical depths up to
some maximum. With blending included this cut-off is reduced from ~ 10 to ~ 4. It

is clear from fig. 4.15 that the error introduced by the neglect of the modification to
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Figure 4.15: Predicted limb-brightening curves for the C 11 25*2p?P3 /5 — 2s2p” 2Py line at
904.143 A as in fig. 4.14. The solid lines correspond to calculations including line blending and the
modification to the upper level population density distribution due to opacity. The dotted lines
correspond to calculations neglecting both line blending and the modification to the upper level
population density distribution.
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the source function due to opacity is negligible compared to that due to the neglect
of line blending. Even at an optical depth of 0.1 blending significantly modifies the
emergent fluxes. Thus a regime exists where opacity effects are significant and g {ry}
is effective. Moreover, both the C 11 and C 111 datasets discussed in chapter 2 fall

within this regime.



Chapter 5

Comments on the effects of

structure and flow

In chapter 2 escape probability and absorption factor techniques were introduced and
applied to spectral data from the SOHO-SUMER, spectrometer in both a diagnostic
and modelling capacity. These analyses were effective in extracting optical depths of
spectral lines of C 11 and C 111 and led to the classification of lines of these two ions
based on the influence of opacity on both atomic population structures and emergent
intensities. Also the techniques, when coupled with simple stratified atmosphere
models were successful in describing observed C 11 and C 111 branching ratios of
lines arising from common upper levels. However, inadequacies were found in the
escape probability /absorption factor methods, such as their inability to extract optical
depths from C 111 branching ratios in the vicinity of the limb and the failure to
accurately predict emergent intensities. The relative simplicity of these methods,
however, make them desirable and have prompted this study into their validity.

So far the influence of the spatial dependence of the source function due to opacity
has been analysed as well as its frequency dependence through spectral line blend-
ing. These studies have led to the identification of an optical depth regime within
which the line-of-sight averaged escape probability, g(i){m}, is valid. However, some

assumptions underpinning these expressions remain untested. Specifically the neglect
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of the spatial dependence of the source function due to the variation of (7, N,) re-
mains unjustified as do the effects of plasma flow and partial frequency redistribution.
The latter two, like line blending lead to a dependence of the source function on fre-
quency. In addition, the roles played by solar atmospheric structure and instrumental
effects in interpreting and modelling spectral emission are yet to be addressed.

In this chapter the influence of atmospheric structure and plasma flow upon the
escape probability approach are considered. The remaining issues listed above will

be addressed in chapter 6.

5.1 Non-stratified models

The atmosphere models examined thus far have been simple but the only structural
restriction on them, as far as the escape probability and absorption factor expressions
are concerned, is that they are static and stratified. Therefore it is necessary to find
a stratified model that best captures the radiative characteristics of the real solar
atmosphere. For example, the exponential model described in chapter 2 is more
effective than the VAL model in describing cross-limb flux ratio variations despite its
empirical nature. This is because it takes account of the extention of the TR into the
corona due to spicule-like structures.

However, the solar atmosphere is not stratified, nor is it static. A question there-
fore presents itself as to how structure and flow affect absorption characteristics in a
plasma and the quantities derived thus far.

Absorption at a point is dependent upon the radiation field at that point. This ra-
diation field is determined by the number of emitters in the plasma and the probability
that photons emitted from them will reach the point in question. This probability
is dependent upon the number of absorbers along the line-of-sight from the emitter
to the absorber. Consider two plasmas of the same total number of emitters and
absorbers, one stratified and one non-stratified. Absorption will be greater in the
stratified plasma than the non-stratified one since in the latter, the particles will ap-
pear more overlapped along each line-of-sight. This may be shown mathematically

as follows: Consider the absorption factor at layer centre. If the layer extends from
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Now consider the regime where the source function is approximately constant. Then
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_ 5.13
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where S, is the source function. The question is now, how does structuring with
respect to f and ¢ influence the radiation field at a point? To answer this, consider

the integral

Tpg= [ emhioanoogy (5.15)

El

Intuitively, it is expected that structuring a plasma will lead to a reduction in the
radiation field. This was discussed above. If this is so then introducing structure with
respect to the angle ¢ in eq. 5.15 will lead to an increase in Z, 4. This may be shown

to be the case as follows: write

T, = /7r e*au,a(ﬁl,o+5(¢))d¢ (5.16)
where
R
v, = —p—F 1
Gvip “ cos 6 (5.17)
= 1 T
Ny = on ). Ni(0, ¢)do (5.18)
e(¢) = Ni(0,9) — Nig (5.19)

Here N;(6, ¢) is written as its average over ¢ — i.e. Kfl,g — plus a quantity, £(¢#), which
describes the deviation of N;(f, #) from the average. It follows that

/” (@)dp = 0 (5.20)
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Euler’s equation for eq. 5.16 subject to the condition specified in eq. 5.20 is then

0

- (e—au,e(ﬁl,o-ks(‘ﬁ)) + )\5((;5)) =0 (5.21)

where ) is a Lagrangian multiplier and is constant. This implies that
—ay ge W (i’z,o+€(¢)) )N =0

=¢e(¢) = const=0 (5.22)

Thus with respect to ¢, the stratified case is an extremal.
To determine whether or not is is a maximal or minimal solution, consider the

following example:

"= { —1 _Z iff;f (5.23)
Then
Ly = re®Niotl) 4 rea(Nigtl)

Thus (¢) = 0 represents a minimal of eq. 5.15 and a maximal of eq. 5.14. Therefore,
with respect to ¢, the stratified case is a minimal of A(7y,0). That it is a minimal of
A(7g, z) for all z follows from symmetry.

The dependence of A(7,0) on structure with respect to 6 does not follow easily
in the plane-parallel case and so is demonstrated here for a spherical plasma.

For a spherical plasma the intensity at its centre is given by

s T rR r
= / / / Nu(r)exp{—a,, / Nl(r')dr’}sinﬁdrd0d¢
A J—x Jo Jo 0
_ Sy [mm e RN (0.0)] o
= = /_ ) /0 [1-e | sin 6o (5.25)
Consider the integral
" e N 6in 9do

Ly =

J
= /ﬂ e~tvo (Vo tn0) gi, gy (5.26)
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where
by = —R (5.27)
Ny = /OWNZ(Q,qb)sinGdH (5.28)
n0) = Ni(0,¢) - Nig (5.29)

Hence
/Oﬁn(Q)siHOd@ ~ 0 (5.30)

Euler’s equation for eq. 5.26 subject to the condition specified in eq. 5.30 is then

0
on
= —byge o (Fot10) gin g 4 Asing = 0

=n(l) = const=0 (5.31)

(e-bu,¢(z‘vl,¢+n<e>) Sin0+)\n(0)sin0) — 0

Thus with respect to 6, the stratified case is an extremal. Moreover, as before, with

respect to 6, the stratified case represents a minimal of A(7, 0).

Discussion

It follows from the above that it is possible to have two plasmas of the same apparent
optical depth in terms of emission, but different optical depths from the perspective of
absorption. This might be observable in disk centre spectra. Consider the intensity
ratio of the 2-2 to the 1-2 component of the C 111 252p 3P — 2p? 3P multiplet
(~ 1175 A). Since these two lines arise from a common upper level, this ratio is
proportional to that of their g{7o} values which are determined by their line-of-sight
optical depths. From an observation of this ratio at disk centre the optical depths of
these lines may be deduced and from them the optical depths of all the other lines
of C 111 may also be calculated. Thus all the C 111 optical depths may be known
from a single g{7y} ratio (see chapter 2). Now consider the intensity ratio of the
2-1 to the 1-2 component of the same C 111 multiplet. These lines do not share an

upper level but have almost identical optical depths. Thus this ratio is proportional
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to that of their upper level population densities which is determined by their g{7o/2}
values. These in turn are dependent specifically upon optical depths at disk centre
and thus the optical depths of all the C 111 may be deduced from the I(2-1)/I(1-2)
intensity ratio. If the plasma is stratified then the two sets of optical depth should be
in agreement. If it is not then those inferred from the latter ratio will be lower than
those of the former.

This reasoning follows from consideration of two plasmas of the same total number
of particles. If, on the other hand, a plasma is de-homogenised by the removal rather
than re-organising or particles — that is, so that the two plasmas are not of the same
total particle number — then the same conclusion results. Removing plasma so as to
leave spicule like structures, for example, means that at disk centre the optical depths
are the same but the degree of absorption is reduced.

The latter perspective is more useful when considering spicule-like structures (i.e.
radial structures) at disk centre. The former perspective (re-organisation rather than

removal) is more useful when considering such structures at the limb.

5.2 Models with flow

Flow introduces a dependence of the absorption and emission profiles on position.
In the zero-flow case the absorption and emission profiles share the same centroid
location and so when flow is introduced it can only act so as to displace one profile
with respect to the other. Only moderate opacities, where the source function is
close to constant, are considered here. In this regime, and in the absence of line
blending, opacity serves at most to influence line profiles by way of flattening their
peaks. In more severely thick circumstances partial frequency redistribution, which
leads to a dependence of the source function upon frequency, can lead to self-reversal
of spectral lines (see fig. 1.8). Thus for the optical depth regime considered here, if
there is no line blending the only effect of this displacement is to reduce the degree of
absorption. Thus the zero-flow, stratified case represents a minimal of A(7, ). This

may be illustrated as follows: consider the intensity, I,., at the point 0 due to emission
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along a ray path of length R. This is given by

I ~ /OR /000 ba(V,0)de(v, T)exp {— /Or ko(r")de(v, r’)dr'} dudr (5.32)

where ¢,(v,7) and ¢.(v,r) respectively denote the absorption and emission profiles

at the point r. For Doppler broadened lines eq. 5.32 may be written as

N / / plutn(r exp{—/ H@(T’)e(“ﬂ(’"’))zdr'}dud?‘ (5.33)
0

where 7(r) is some function describing the Doppler shift of the line profile due to the
flow velocity at the point r. If f(ko,n,7) is defined such that

R
~ [ fko,mrydr (5.34)
0
then for extremals with respect to n, Euler’s equation is

afo

- / l u+n ( 2(u+n(r)))ea&p{—/ Ko(rl)e(u—l_n(w))zd?“’}
0
+ et ) g {_ / " no(r')e(“+”(’"l))2dr'}
0
x/ /ﬁo(r')e("+"(rl))22(u+77(7“'))d7“'] du = 0 (5.35)
0

This is satisfied if n(r) = 0 for all values of r and thus this condition specifies an
extremal. To determine whether or not it is a maximal or minimal, consider the
case where at all points along the ray the plasma is stationary except at the point of
absorption (r = 0) where there is flow parallel to the ray. In this case the line profile
due to emission along the ray is displaced in frequency space from the absorption
profile at » = 0. The convolution of the two inevitably results in a decrease in
absorption compared to the zero-flow case. Thus when there is no line blending the
zero-flow case represents a minimal of the absorption factor.

In the case of line blending the situation becomes more complex. Blending itself
leads to a decrease in the absorption factor and so since flow will contribute to the
extent of blending, a decrease in the absorption factor results. Thus when there is

blending, the zero-flow case does not necessarily represent a minimal.
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In general flow and blending ought to be treated self-consistently but if the main
influence of flow is to broaden emission profiles then flow may be accounted for within
the blending formulation. In this event flow is included implicitly. This has in fact
already been the case in the analyses presented so far since spectral lines emanating
from the TR have Gaussian profiles broadened beyond their thermal widths due to

non-thermal velocities (Spadaro et al., 1996).

5.3 Concluding remarks

The escape probability approach hinges on the separability of the effects of opacity
upon the population structure and on emergent fluxes. This separability de-couples
and linearises the equations of radiative transfer and statistical balance. In a strati-
fied, stationary atmosphere an optical depth regime exists whereby this separability
is possible and where opacity effects are significant and observable. This regime is
defined according to the degree of absorption within the plasma and the extent of the
modification to the upper level population density distribution due to opacity which
are characterised by the absorption factor, A(7,z). Following this the influence of
structure and flow upon the extent of this optical depth regime must be addressed.
Both structure and flow serve to diminish the degree of absorption as compared with
the stratified, stationary case, except when there is blending where flow can enhance
the blending effects and thus lead to an increase in the degree of absorption. Pro-
viding that plasma flow influences emission profiles by way of broadening and does
not distort their shape then flow may be accounted for within blended lines as well
as unblended ones. It is therefore appropriate to consider the stratified, stationary
atmosphere in determining the region of validity of the g{7y} quantity as structure

and flow will not further restrict this region.



Chapter 6

Plasma diagnostics and models
using the improved escape

probability

In chapter 2 simple escape probability techniques were applied to C 11 and C 111 spec-
tral measurements of the East solar limb using the SOHO-SUMER spectrometer. The
line-of-sight averaged escape probability, {7}, was used to extract optical depths
of certain C 11 and C 111 lines from observed branching ratios (see sec. 2.3), from
which optical depths of all the lines of these ions can in principle be calculated. The
{70} quantity was then coupled with simple stratified atmosphere models to predict
intensity ratio variations (figs 2.16a and b). These models were found to be effective
from on the disk to beyond the limb at which point the model and observed values
began to deviate, possibly indicating the dominance of instrumentally scattered light.

Based on the most effective fit to the observed branching ratios in the C III case,
a model limb brightening curve was calculated for the C 111 252p*P, — 2p*3P; line
at 1175.711 A (see fig. 2.17). This model was successful on the disk, leading up to
the limb but failed in the vicinity of the limb itself. In this region the model fluxes
greatly exceeded the observed ones. This discrepancy was echoed in the failure of the
escape probability technique to extract optical depth values for the C 111 lines just

beyond the visible limb. The flux model was effective, however, at heights well above

139



140

the limb where the model ratios failed.

Fits to the ratios were optimised according to optical depth at disk centre, density
scale height for the exponential density model, and layer thickness for the constant
density model. From the disk centre optical depths obtained, along with those ex-
tracted at the limb, the spectral lines of C 11 and C 111 were classified according to
the effects of opacity on both the population structure and emergent fluxes.

These results demonstrate that the escape probability and absorption factor tech-
niques of chapter 2 provide useful and insightful solutions to the equations of radiative
transfer and statistical balance. They also illustrate, however, that they are limited
in applicability due to the underlying assumptions upon which they are based. These
assumptions relate to variations in the line source functions, atmospheric structure
and instrumental effects. Nevertheless, these methods are comparatively simple in
comparison with the techniques of radiative transfer and Monte Carlo simulations,
and they represent the only means by which optical depths may be extracted from
observations in a manner that is model independent. Moreover, the line-of-sight
averaged escape probability lends itself naturally to use within arbitrarily complex
geometric models of the solar atmosphere.

These facts make the escape probability/absorption factor approach desirable and
have prompted the study into their underlying assumptions that is presented here.
So far in this study the variation of the source function due to opacity has been
analysed and the effects of spectral line blending have been included within the escape
probability /absorption factor framework. Furthermore, the influence of atmospheric
structure and plasma flow have been considered. These investigations have shown
that from consideration of an appropriate stratified, static, plane-parallel atmosphere,
an optical depth regime may be identified within which the line-of-sight averaged
escape probability, g {r}, is sufficient to describe the effects of opacity on emergent
intensities. It has also been shown that if g® {7} is valid in the stratified, static case
then it is also valid for an atmosphere with structure and non-zero flow providing
that the latter does not lead to a deviation of emission profiles from Gaussian.

Figs 6.1a and b show observed line profiles for the C 11 25*2p2Py/y — 252p® 2P /5
line at 904.481 A and the C 111 252p® P, — 2p®3 P, line at 1176.370 A for every pointing
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Figure 6.1: Observed line profiles for (a) the C 11 25?2p2 P35 — 252p 2P} /5 line at 904.481 A and
(b) the C 111 252p3 Py — 2p?3 P line at 1176.370 A. Profiles are shown for every pointing position.
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position. These lines are unblended yet display no significant deviation from Gaussian
at any point. It follows that for both the C 11 and C 111 datasets considered here,
plasma flow may be included implicitly. Furthermore the disk centre optical depths
deduced in chapter 2 imply that the g®{7,} expression is valid for the spectral lines
of both these ions regardless of the structuring of the atmosphere.

In this chapter the SOHO-SUMER data discussed in chapter 2 is re-assessed using
the blended escape probability from both a diagnostic and modelling perspective.
The analyses so far, coupled with consistent treatment of the variation of optical
depth with line-of-sight and the inclusion of instrumentally scattered light, allow the
discrepancies found in chapter 2 between modelled and observed quantities to be
resolved. In the process, the neglect of the spatial variation of the source function
due to the variation of (T, N,) will be justified. Additionally, spicule-like structures
that are unresolved by the SUMER spectrometer will be identified.

6.1 The geometric extension of the line-of-sight

In chapter 2 the escape probabilities were derived within a constant density framework
but were considered in variable density models. It has subsequently been shown that
providing the source function is constant the ¢ {7,} and g {r} expressions remain
the same in the variable density case. However, the definition of 7y does change. In
the constant density case the optical depth is given by

To = kolV; ds = kgN,L (6.1)

l.o.s.
where L is the length of the line-of-sight. In this case the geometric extension of
the line-of-sight as a whole controls the variation of the optical depth with pointing

position. In the variable density case, however, the optical depth is given instead by

To = Ko /l.w. N(s)ds (6.2)

For a stratified model it is again the geometric extension of the line-of-sight that
controls the variation of optical depth, but due to the curvature of the atmosphere

each sub-layer extends differently. Take, for example, the line-of-sight corresponding
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to the inner edge of the emitting layer (approximately 962 arc sec). This line-of-sight
intersects the inner edge of the emitting layer tangentially, but emerges from the layer
at a sharper angle. Therefore the sub-layers near the inner edge of the emitting layer
are extended to a greater extent in this region than those near the outer edge. This
leads to a stronger disk-to-limb variation of optical depth in the models where the
density of the emitting layer decreases with height.

Fig. 6.2a shows observed and model limb-brightening curves for the C 111 252p3 P, —
2p%3 P, line at 1175.711 A. Model values are shown including and excluding line blend-
ing. The dotted line is directly comparable with fig. 2.17 from which it can be seen
that the correct evaluation of optical depth has a marked influence upon the calcu-
lated fluxes. The fit is improved in the vicinity of the limb, although a discrepancy
remains. Beyond the limb the fall-off of intensity is less well tracked than before.

Fig. 6.2b shows the corresponding branching ratios, I(2-2)/I(1-2), which are com-
parable with those of fig. 2.16b. Certain features are as expected: line blending leads
to an increase in effective optical depth and improves the fit as compared with the
unblended case and the optimal optical depth is less in the blended case. However,
given, as stated above, that the optical depth variation in the variable density case
is more marked than in the constant density case, it is somewhat surprising that the
model curves to not track the observed ones so well as in fig. 2.16b. The reason for
this is that the expression for optical depth used in chapter 2 (79 = const x ¢/ cos 0)
is an approximation and breaks down, becoming infinite, at the inner edge of the
emitting layer. Thus with this expression the optical depths are overestimated in the
vicinity of the limb and this serves, ironically, to improve the fit to the ratios. It is
also responsible, however, for the extent of the overestimate of the fluxes at the limb
observable in fig. 2.11.

There remains a discrepancy between the observed and model fluxes and ratios in
the region of and beyond the limb. The model overestimates both the fluxes and ratios
in the vicinity of the limb, whereas beyond this region the fluxes are underestimated
and the ratios are overestimated. The situation at the limb is interesting since if
it is assumed that the ratio of upper to lower level population density is constant

throughout the layer (i.e. that g {7y} is valid) then fig. 6.2a implies that the column
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Figure 6.2: (a) Observed fluxes versus raster position for the C 111 252p* P, — 2p?3P; line at
1175.711 A. The solid line represents 5 {7y} based model results with blending included (eq. 4.5)
and with a disk centre optical depth of 0.16. The dotted line represents the same but with blending
excluded (eq. 2.17). The dashed line represents the unblended calculation with an optical depth of
0.2. (b) Observed branching line intensity ratios versus raster position in arc sec relative to the disk
centre for the C 11 I(2-2) /I(1-2) ratio as in fig. 2.15b. Solid, dotted and dashed lines are as in (a).
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density is overestimated by the model, and fig. 6.2b implies the opposite. This paradox
suggests the presence of structures that are observationally unresolved. This will be

discussed later.

6.2 Instrumentally scattered light

In chapter 2 it was speculated that the off-limb discrepancy between the model and
observed branching ratios indicated the dominance of instrumentally scattered light.
If so then it is possible that scattered light will also account for the discrepancy in
the fluxes at such heights. It is expected that the branching ratios should return
to their optically thin values well above the limb as the (apparent) density of the
atmosphere decreases. For C 111 this is not found. Rather the ratios in this case move
closer to their on-disk values at heights above ~ 970 arc sec. This is true even though
the fluxes at these heights are very much smaller than those on disk. In addition,
Doppler shifts of multiplet lines to the blue, seemingly indicative of tangential flows
of the order of 20 km/s, are seen in the C 111 lines. The region of apparent onset of
these shifts is the same as that where the branching ratios begin to deviate from the
model values. These facts suggest that at heights above ~ 970 arc sec instrumentally
scattered light — that which originates from all locations on the sun and scatters off
the interior of the telescope prior to passing through the entrance slit — dominates
the observed signal. If this is so then the observed Doppler shifts indicated upflows
on-disk and not beyond the limb.

The entire disk contributes to the scattered light signal with the contribution from
each point being characterised by the instrument point spread function, psf, which
represents the relative intensity of a point source as a function of lateral distance
from the slit. This is shown in fig. 6.3. David et al. (1997) have shown that the
pre-launch point spread function is still effective and so it may be used to complete
the calculation. The emitted flux, F, from position h, which is related to the emitted

intensity via F(h) = const x I(h), is given by

F(h) = //dk Fi(x) x psf(|h — x|)dx (6.3)
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Figure 6.3: The SUMER pre-launch point spread function (x’s) (Lemaire, 1998) — relative intensity
of a point source versus lateral distance from source to slit centre. The dotted line is a fit to the
measured points used in the analysis described.

where F;(x) is the true signal. Scattered light may be included within all the mod-
els presented so far using eq. 6.3. Model fluxes and ratios including the effects of

instrumentally scattered light are presented below.

6.3 Model predictions

The three atmosphere models presented in chapter 2 are considered again. A fourth
model is introduced that is a composite of models 1 and 3, comprising of a narrow
TR shell with an exponential component to account for the extension of the TR into

the corona due to spicule-like structures. Thus the models may be summarised as

1. Thin TR based on the VAL atmosphere model



147

2. Spherical shell of constant density
3. Layer of density that falls off exponentially with height
4. Composite of models 1 and 3

Each of these models includes the effects of line blending and scattered light. Using
these stratified atmosphere models, limb-brightening curves and branching ratios ver-
sus pointing position may be calculated using eqs 3.25 and 4.5. Since it is assumed
that the source function is constant in space, eq. 3.25 is equivalent to eq. 2.43, which

was used in chapter 2 to model limb-brightening curves.

6.3.1 Fluxes

The observed spectral line fluxes for the C 11 25°2p ?P3js — 252p* ?Sy), line at
1037.020 A and the C 111 2s2p 3P, — 2p? 3P, line at 1175.711 A are shown in figs 6.4a
and b respectively with the predicted fluxes (calculated via eq. 3.25) overlaid. Model 1
fails completely for both C 11 and C 111 as expected since it does not recognise the
extension of the TR into the corona due to spicules and other structures. For this
model, all the emission above 962 arc sec is due to scattered light. Also the point of
peak emission in this model is shifted back from 962 arc sec to ~ 960.5 arc sec since at
this height there is a scattered light contribution from positions closer to and further
from the solar disk. In contrast, at 962 arc sec there are only contributions to the
scattered light component are from positions nearer to disk centre. Models 2, 3 and 4
track the trend in both cases in broad terms but not in detail, failing most markedly
at the limb and well off limb. On disk, despite the averaging over the slit, the fluxes
display a sensitivity to the structural detail. This detail is evident in the surface plots
in figs 2.8a and b. The sensitivity of the emergent flux to column density is implied
by eq. 3.25 since g{7o} is insensitive to optical depth for values greater than ~ 1 (see
fig. 2.2).

At heights of ~ 970 arc sec and above, despite the inclusion of scattered light,
the fluxes are not tracked well by the models. Rather, the models predict intensities

significantly smaller than those observed.
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Figure 6.4: Observed and model fluxes for the (a) C 11 25>2p ?P3 5 — 252p? %S, /5 line at 1037.020 A
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and the solid lines are the model predictions numbered as in the text. Note that the visible limb is
at 959.6 arc sec.
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The inclusion of line blending, scattered light and the improved calculation of
optical depth for each line-of-sight has a marked influence on the predicted fluxes.
This difference is evident in the comparison of fig. 6.4b with fig. 2.17. It can be seen
that these advancements to the models improve the fit to the fluxes at the limb but
at heights beyond the limb the fit is less effective than before. Furthermore, while
the fit is improved at the limb, the fluxes are still significantly overestimated by the

models.

6.3.2 Ratios

The observed and model flux ratios of the (3/2-1/2)/(1/2-1/2) components of the
C 11 2s%2p 2P - 252p? 2S multiplet and the (2-2)/(1-2) components of the C 111 2s2p 3P —
2p? 3P multiplet are shown in fig 6.5a and b respectively. The models here are much
more effective than in the case of emergent fluxes since the linear dependence of the
intensity on column density (eq. 3.25) is factored out (eq. 2.22). In the C 111 case the
dip in the ratios at the limb is underestimated yet optical depths at this point are
such that the g® {7} ratio, in the absence of blending, is insensitive to optical depth
(see fig. 6.6). When blending is included, absorption of 2-2 line photons by the 1-1
line leads to a decrease in the ratio. The underestimation of the observed values by
the model at the limb suggests an underestimate in lower level population density
of either the 2-2 line or the 1-1 line yet at this point the emergent intensities are
overestimated suggesting an overestimate in the upper level column densities. This
discrepancy is possibly due to a structure, not along the line-of-sight but along the
slit. This will be discussed further in sec. 6.7.

For the model branching ratios the inclusions of scattered light is sufficient to en-
sure agreement within the error bars to the observed values at heights of ~ 970 arc sec
and above. Comparison of figs 6.5a and b with figs 2.16a and b shows that the more
advanced methods used here lead to an improvement to the fit to the ratios beyond
the limb but a worse fit at the limb. Curiously the improvement in the fit to the

ratios occurs where the fit to the fluxes reduces in quality, and vice versa.
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Figure 6.5: Observed and model branching ratios of the (a) (3/2-1/2)/(1/2-1/2) components of
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Figure 6.6: Intensity ratio of C 111 (2-2)/(1-2) versus optical depth for the unblended (dashed)
and blended (solid) cases, calculated using eqs 2.17 and 4.5 respectively.

6.3.3 Discussion

The best fit to the observed ratios for each model yields optimal parameters for
each of the two ions. The two most effective models in each case are models 3 and
4 for which the most significant parameters are optical depth at disk centre and
density scale height. The disk centre optical depths returned were 0.7 and 0.15 for
the C 11 25*2p? P35 — 252p® %S, /5 line at 1037.012 A and the C 111 252p 3Py — 2p? 3 P,
line at 1175.711 A respectively. These compare with values obtained in chapter 2
of 0.6 and 0.16 respectively. The difference in the C 11 case is due to the improved
calculation of optical depth whereas the difference in the C 111 case is principally due
to the inclusion of line blending.

Optimisation of density scale height yields values of 1.2 and 2.5 arc sec for both
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models 3 and 4 for C 11 and C 111 respectively. The scattered light signal becomes sig-
nificant at heights beyond the inner edge of the emitting layer — i.e. as the (apparent)
density falls off to zero. As a consequence the optimised scale height is dependent
upon the inclusion of scattered light. Specifically, it is less when scattered light is
included. When it is excluded the optimal scale height for C 11 is 4 arc sec. These
compare with values obtained in chapter 2 of 1.3 and 1.4 arc sec respectively. The
difference in the C 11 values is due to the inclusion of scattered light. The difference
in the C III case is due to the inaccurate fit to the observed ratios at the limb.

Fig. 6.5b shows that model 4 is slightly more effective than model 3 in describing
the C 111 ratio variation across the limb. However, the relative magnitude of model 1
to model 3 in the composite case was treated as an adjustable parameter and while a
large value (~ 100) is optimal in the C III case, a low value, namely 0, is the optimal
value for C 11. As a consequence model 4 is considered in this study to be largely
redundant. The scale heights in both cases are similar to the ~ 1.5 arc sec findings
of Mariska et al. (1978) and to those found in chapter 2 — noting that the C 111 scale
height is likely to be an over estimate as the slope of the ratios in the region from
964 — 970 arc sec is not matched. They also agree with both in terms of the decrease
with decreasing temperature of line formation.

In order for the scattered light to dominate at the appropriate point in the C 111
data, a departure from the exponential fall off of density is required. A cut-off is
introduced in the model for this purpose, the position of which may be optimised for
agreement with the observed ratios. This cut-off is found to be at ~ 969 arc sec. This
value is influenced by the fact that the scale height is optimised as described above
and is thus overestimated. Consequently in the absence of a cut-off the predicted
onset of scattered light occurs later than observed.

A possible interpretation for this departure from an exponential fall off, or at least
a change or even discontinuity in scale height, follows from the model considered by
Mariska et al. (1978) who, as stated in chapter 2, envisaged cylindrical spicules. The
exponential fall off of density in this picture reflects the change in filling factor as
the number of spicules intersected by the line-of-sight decreases with distance beyond

the limb. Ultimately, however, the density variation will reflect the genuine density
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variation at the top of a spicule. However, the introduction of this parameter is
introduced so that the off-limb discrepancy between observed and model branching
ratios (seen in figs 2.16 and 6.2b) might be resolved by the inclusion of scattered light.
This it does, but it does not account for the emergent fluxes observed at such heights.
It is therefore likely that this parameter is a numerical fudge.

As predicted in chapter 2, the inclusion of scattered light is sufficient to match
the off-limb model C 111 branching ratios to the observed ones within the error bars.
However, the discrepancy between the model and observed fluxes at heights beyond
~ 970 arc sec is non-trivial. This suggests that the signals at such heights are true
and not dominated by instrumentally scattered light. If so, then the branching ratios
indicate that the optical depths at heights beyond ~ 970 arc sec are comparable with
those on disk which in turn imply comparable column densities. The fluxes at such
heights, however, are significantly smaller than those on disk which indicate that the
column densities are significantly smaller than the ones on the disk. This is a paradox
which may be resolved if the emitting structures at heights beyond ~ 970 arc sec are

unresolved (see sec. 6.7).

6.4 Comments on the effectiveness of stratified mod-

els

It is clear that stratified models are sufficient to track the branching ratio variations
well, failing only in the C I1I case in the vicinity of the inner edge of the emitting layer.
Furthermore, the inclusion of scattered light leads to an effective fit to the ratios above
heights of ~ 970 arc sec where previously there was a discrepancy between the model
(and intuitive expectations) and the observations. The fit to the emergent fluxes, on
the other hand, is improved compared to that in sec. 2.7, but, nevertheless, still not
modelled well. Moreover, in the case of the fluxes, scattered light is not sufficient to
explain the signals off limb. It is natural to conclude that this is due to the failure
of the stratified model at heights lower than the region of scattered light dominance.

But even if the observed signal is used to calculate the scattered contribution, the
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predicted signal at heights above ~ 970 arc sec is still much lower than that observed.

If the signal in these regions is predominantly a true signal, the issue of the mis-
match between the column densities at such heights implied by the branching ratios,
and those implied by fluxes resurfaces. In addition, the interpretation of the Doppler
shifts discussed in sec 2.4 is again in doubt. The signals, being true, imply that these
shifts indicate either 20 km /s upflows beyond the limb or 20 km /s downflows on disk,
and at the limb. As discussed in chapter 1, although both upflows and downflows are
evident in TR spectral lines, spectral emission from downflowing plasma is dominant.
Typical velocities are ~ 5 — 16 km/s (Brekke et al., 1997) which are less than those
found here. They are, however, consistent in magnitude with velocities associated
with rising spicule structures (Lorrain & Koutchmy, 1996). If the shifts are to the
red, then they persist up until the limb. This is inconsistent with the analyses of Athay
& Dere (1989) and Henze & Engvold (1992) who found that the shifts vanished at
the limb. Feldman et al. (1982), however, suggest that the redshifts do not disappear
at the limb though they do decrease. Following this, the findings here would suggest
downflows of velocity greater than 20 km/s on disk.

As discussed earlier, the relative effectiveness of the fit to the ratios as compared
with the fluxes is due to the fact that the linear dependence of the fluxes on col-
umn density is factored out in the ratios. This dependence is present in the fluxes
themselves. Thus the ratios are relatively insensitive to structure. Since the ratios
are indicators of absorption which is characterised by the absorption factor, this in-
sensitivity to structure illustrates the appropriateness of the stratified model in the
calculation of the absorption factor. This also follows intuitively from eq. 2.33 in
which the intensity term is integrated over volume, thus averaging over the structural
detail.

The fits to the fluxes, however, demonstrate a sensitivity to structure. The strat-
ified models are able to describe the emission in broad terms but not in detail. For a

more accurate fit, the fine structure must be included in the emergent flux model.
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Table 6.1: Summary of data for the C 111 252p % P, —2p? 3 P, transition for each raster scan position.
T0,2,2/7'0’1,2 = 3204

POS.(”) T0,2—2 g{’i’oyg_g} POS.(”) T0,2—2 g{T(),Q_Q}

943.06  0.61 (0.74) 0.80 (0.78) 959.94 54.0 (-) 0.03 (-)

944.94  0.80 (0.94) 0.75 (0.74) 961.88 5.40 (8.64) 0.27 (0.21)
946.81  0.90 (1.09) 0.73 (0.71) 963.75 1.40 (1.68) 0.62 (0.60)
948.60  1.05 (1.27) 0.69 (0.67) 965.63 1.04 (1.27) 0.70 (0.67)
950.56  0.86 (1.05) 0.74 (0.71) 967.50 1.20 (1.42) 0.66 (0.64)
952.44 1.00 (1.18) 0.71 (0.69) 969.38 1.50 (1.81) 0.61 (0.58)
954.31 1.51 (1.86) 0.60 (0.58) 971.25 1.40 (1.67) 0.62 (0.60)
956.19 2.70 (3.42) 0.45 (0.41) 973.13 1.81 (2.24) 0.56 (0.53)
958.06 15.0 (-) 0.11(-)  975.00 1.72 (2.13) 0.57 (0.54)

6.5 Extraction of optical depth from observations
and the validity of the escape probability ap-

proach

Optical depths may be deduced from the branching ratios with blending included
following the approach described in sec. 2.3. Results corresponding to those of ta-
bles 2.1, 2.3 and 2.5 are shown in tables 6.1 — 6.3. The values in brackets are those
deduced without blending (i.e. those of tables 2.1, 2.3 and 2.5). It can be seen that
in each case the optical depths deduced when blending is included are smaller than
those obtained when it is not.

It is interesting to note that for the C 111 2s2p *P, — 2p? 3P, transition (ta-
ble 6.1) the blended g {ry} is effective in extracting optical depth values at 958.06
and 959.94 arc sec. With and without blending the g{Tél)} / g{Té2)} curves decrease
monotonically with a gradient that also decreases with optical depth (see fig. 6.6).
Furthermore the gradient is greater when blending is included. Consequently, while
without blending the g{7y} quantity yields unphysical optical depths at 958.06 and

959.94 arc sec the values are meaningful when blending is included.
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Table 6.2: Summary of data for the C 11 25?2p %P3/, — 252p* 25} /5 transition for each raster scan
position. 7y3/2-1/2/70,1/2—1/2 = 1.97. These values are the same as in table 2.3 since there is no
line blending here.

POS-(”) T0,3/2—1/2 §{70,3/2—1/2} POS-(”) T0,3/2—1/2 §{70,3/271/2}

943.06 5.30 (5.30) 0.31 (0.31) 959.94 10.2 (10.2) 0.18 (0.18)
944.94 5.25 (5.25) 0.31 (0.31) 961.88 6.0 (6.00) 0.28 (0.28)
946.81 4.95 (4.95) 0.32 (0.32) 963.75 2.82 (2.82) 0.46 (0.46)
948.69 5.70 (5.70) 0.29 (0.29)  965.63 0.36 (0.36) 0.88 (0.88)
950.56  6.23 (6.23) 0.27 (0.27)  967.50 0.36 (0.36) 0.88 (0.88)
952.44 6.00 (6.00) 0.28 (0.28)  969.38 - ( -) -(-)
954.31  6.70 (6.70) 0.26 (0.26)  971.25 - (- ) -(-)
956.19 5.80 (5.80) 0.29 (0.29) 973.13 - (- ) -(-)
958.06 6.20 (6.20) 0.27 (0.27)  975.00 - ( -) -(-)

Table 6.3: Summary of data for the C 11 25?2p %P3, — 252p* 2 P; 5 transition for each raster scan
pOSitiOIl. T0’3/2_3/2/7'0,1/2_3/2 = 5.05.

Pos.(”) T0,3/2—3/2 §{7'0,3/2—3/2} Pos.(”) T0,3/2—3/2 9{7'03/2—3/2}

958.06  3.30 (5.10) 0.38 (0.31 975.00 0.75(1.29) 0.76 (0.67

943.06 3.20 (4.95) 0.39 (0.32) 959.94 3.05 (4.69) 0.40 (0.33)
944.94 3.23 (5.01) 0.39 (0.32) 961.88 3.13 (4.84) 0.40 (0.33)
946.81 2.71 (4.13) 0.43 (0.36)  963.75  2.90 (4.40) 0.42 (0.35)
948.69 2.86 (4.37) 0.42 (0.35)  965.63 1.90 (2.88) 0.53 (0.46)
950.56 3.31 (5.15) 0.38 (0.31)  967.50 1.54 (2.36) 0.59 (0.51)
952.44 3.12 (4.81) 0.40 (0.33)  969.38 0.58 (1.07) 0.81 (0.71)
954.31 3.00 (4.56) 0.41 (0.34) 971.25 0.83 (1.40) 0.74 (0.65)
956.19 3.40 (5.23) 0.37 (0.31)  973.13 1.01 (1.63) 0.70 (0.61)

(5.10) (0.31) (1.29) (0.67)
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6.6 Removing the discrepancy between model and

observed spectral data

It is clear that the stratified models presented, in conjunction with the blended, line-
of-sight averaged escape probability, g(i){To}, are unable to accurately describe the
C 11 and C 111 spectral characteristics observed by SOHO-SUMER in the vicinity of
the solar limb. Yet it has been asserted in this work that g {7} is appropriate and
accurate in describing the effects of opacity in the spectral lines of these ions. If this
is true then the failure of the models presented is in their treatment of structure,
and thus the variations in column density, and not due to a dependence of the source
function on space or frequency either due to photon scattering or plasma flow. To
demonstrate that this is the case, consider fig. 6.7. This shows observed fluxes for
the C 111 252p >P, — 2p? 3P, line at 1175.711 A with the function 7,V {7y} over-
laid. Here the optical depth at each point is not based on any model, stratified or
otherwise. Rather the optical depths are those extracted from the observed ratios
and listed in table 6.1. The predicted fluxes are scaled to match the observed value
at 943.06 arc sec. The discrepancy is marked and denotes a failure in the escape
probability model. Clearly at least one assumption underpinning the theory is not
valid.

It has been shown that the modification to the source function due to opacity is not
significant for either the C 11 or C 111. However, it was shown in chapter 3 that there
is a spatial variation of the source function due to the variation of electron density
and temperature through the emitting layer. This variation was overlooked and the
assumption was made that each emitting layer may be represented by a single (T, V)
pair. This assumption was motivated by the notion of an emitting layer comprising of
thin TR sheaths surrounding spicule-like structures which extend into the corona with
lengths greatly exceeding the thickness of each sheath. This assumption allowed the
modification to the source function purely due to opacity — or alternatively, scattering
into the line-of-sight — to be considered. It was not justified at the time and thus it
is conceivable that this variation is partially or wholly responsible for the breakdown

of the 705 {7y} expression evident in fig. 6.7.
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Figure 6.7: Observed fluxes for the C 111 252p 3P, — 2p? 3P line at 1175.711 A. Overlaid is
the function 7939 {79} (solid line) where the optical depths, 7, for each position are taken from
table 6.1.

It was shown in sec. 3.10 that the intensity of an unblended line may be written

as

I ~ ng{TO}Lflos{TO} (64)

where

N.(t) g(t)
Ni(t) 9{7'0}

fios{mo} = / (6.5)

This extends to blended lines if g {7y} replaces g{7} in eq. 6.4. There is therefore
a key issue relating to the nature of the dependence of f,s{7} on line-of-sight and
optical depth.

Within the picture of thin sheaths around extended spicule-like structures, the
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line-of-sight optical depth is principally determined by the number of structures inter-
sected by that line-of-sight. Providing the conditions within each sheath are similar,
the dependence of fi,s{7o} on line-of-sight will be weak. The optical depth is smaller
on-disk than at the limb — for example the model based optical depth at disk centre
for the C 111 2s2p *P, — 2p? 3P, line at 1175.711 A is 0.16 which compares with obser-
vationally deduced values of 0.61 and 1.40 at 943.06 and 963.75 arc sec respectively.
Thus it may be deduced that for C 11 and C 111 optical depth of a single sheath is
small and that the number of structures intersected by the each line-of-sight in the
vicinity of the limb is large.

If the variation of the source function with respect to space is responsible for
the deviation of observed and predicted fluxes in fig. 6.7, a correlation between this
deviation and optical depth is expected. This would manifest itself at each raster
position in a line to line variation of the deviation. An investigation into this is
presented below but first, consider the dependence of the source function on frequency.

It has been shown in chapters 4 and 5 that the possible contributors to a de-
pendence of the source function on frequency are either negligible or manageable
within the escape probability framework. The relevant optical depths are sufficiently
small that scattering into the line-of-sight is insignificant. Consequently the effects
of blending may be included within the line-of-sight averaged escape probability,
g {1y}. They are also sufficiently small to ensure complete frequency redistribution.
This is confirmed by the observed line profiles which suffer minimal deviations from
Gaussian profiles which may be described within the escape probability theory. Also
confirmed by the observed profiles is the fact that plasma flow, though evident from
the observed Doppler shifts (see sec. 2.4), presents no difficulty and may be accounted
for within the blending formulation. Photon scattering can lead to a dependence of
the source function on frequency through partial frequency redistribution. Multiple
scattering in the wings of the La line of hydrogen can lead to significant changes in
the flux of that line which in turn can affect the charge balance and gas pressure
through modification of the ionisation balance of hydrogen. However, the effects of
partial frequency redistribution on line fluxes of other lines are not typically very large

and so complete frequency redistribution is usually a good approximation (Hubeny &
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Lites, 1995). This is confirmed by fig. 6.1 which shows no significant deviation from
Gaussian profiles.

The third potential source for the deviation of predicted from observed fluxes is
atmospheric structure. In chapter 5 structure was discussed and it was demonstrated
that it leads to a reduction in the degree of absorption within a plasma. Therefore, if
the validity of g®{ry} is confirmed by consideration of the absorption factor within
a stratified atmosphere model, then the presence of structure will strengthen rather
than threaten this validity. Hence, from the perspective of the modification to the
population structure (or scattering into the line-of-sight), structure does not influence
the validity of the g {7} expression. Moreover, it was demonstrated in chapter 3 (see
sec. 3.3) that if it is assumed that the source function is constant in space, then the
g {7} expression is independent of the nature of the variation of density along the
line-of-sight. So structure along the line-of-sight is not responsible for the discrepancy
in fig. 6.7. However, structure will influence the fluxes if the observed structures are
smaller in one or more dimension than the resolution limit of the instrument — i.e. if
the observed structures are unresolved. If this is so then the term f;,s{70} may be
interpreted as a filling factor. This is a purely geometric quantity and is therefore
independent of optical depth.

If structure is responsible for the discrepancy in fig. 6.7, then in contrast to the
case of the source function variation being responsible, a constancy of fi,s{7o} with
respect to 7y is expected.

Shown in fig. 6.8 are observed fluxes versus raster position for each component
of the C 111 252p 3P — 2p? 3P multiplet with plots of fios{70}709® {70} overlaid. As
in fig. 6.7, the optical depths are those listed in table 6.1. The factors fi,s{7o} are
determined such that the observed and predicted fluxes in fig. 6.7 match exactly and so
for each raster position there is only one scaling factor for all the lines of the multiplet.
It can be seen from this figure that the single set of factors fi,s{7} is sufficient to
match the predicted intensities to the observed ones almost exactly for each line
with the exception of the 1-1 and 1-0 components. Both these are blended and the
discrepancy between predicted and observed values is most significant in the vicinity

of the limb which corresponds to the region of most significant optical thickness and
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Figure 6.8: Observed fluxes versus raster position for each component of the C 111 2s2p * P — 2p? > P
multiplet. Overlaid are plots of flos{To}Tog(i){To} where the optical depths are those deduced from
the observed branching ratios which are listed for the 2-2 component in table 6.1. The factors
fi0s{70} are determined such that the observed and predicted fluxes in fig. 6.7 match exactly.
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thus also the greatest degree of blending. Furthermore the discrepancy is most marked
for the 1-1 line which is in turn the most significantly blended of the two. These facts
suggest that the discrepancies in the 1-1 and 1-0 components relate to the difficulty
in resolving these lines and not due a weakness in the escape probability analysis.
It is also true that the 1-1 and 1-0 components are the most optically thin of the
multiplet (see table 2.7) which might suggest that the discrepancies in these lines are
due to a dependence of f;,s{79} on optical depth. However, the 1-0 component has a
comparable optical depth to that of the 0-1 component which shows good agreement
between predicted and observed intensities.

Fig. 6.9 shows the same as fig. 6.8 but for the components of the C 11 25%2p 2P
— 252p? 2P multiplet. In these plots there is good agreement between model and
observed fluxes for all the components with the only exception being the 1/2-1/2
component which is not the most optically thin. In fact it is the closest in optical
depth to the control line (i.e. the one that determines the fj,s{7} values). It is,
however, the most severely blended of all the lines of this multiplet.

Fig. 6.10 shows observed fluxes versus raster position for each component of the
C 11 25%2p 2P — 252p 2P multiplet at ~ 1036 A again with plots of fi,s{70} 709" {70}
overlaid. Here there is near perfect agreement between the two lines, neither of which
are blended.

It follows then that fi,s{70} is independent of optical depth, 7y, since the same
set, of factors, f1,s{70}, are effective for each line even though the optical depth varies
from line to line. Further confirmation of this follows from the findings of secs 6.3.1
and 6.3.2 in which it was found that at the limb the stratified models, coupled with
the escape probability techniques, overestimate both the emergent fluxes and the
C 111 branching ratios at the limb. Furthermore, at heights above ~ 970 arc sec
both the C 11 and C 111 emergent fluxes are underestimated whereas the branching
ratios are overestimated if the effects of instrumentally scattered light are neglected.
At the limb the stratified model predicts column densities too great to match the
emergent fluxes but too small to match the ratios. This discrepancy is removed if
the emitting structures in the vicinity of the limb are partially or wholly unresolved.

Well beyond the limb the ratios indicate optical depths comparable with those on
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Figure 6.9: Observed fluxes versus raster position for each component of the C 11 2s?2p 2P
— 252p® 2P multiplet. Overlaid are plots of f;,s{70}709® {7} where the optical depths are those
deduced from the observed branching ratios which are listed for the 3/2-3/2 in table 6.3. The factors
fios{T0} are determined such that the observed and predicted fluxes for the 3/2-3/2 component
match exactly.
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Figure 6.10: Observed fluxes versus raster position for each component of the C 11 2s%2p 2P
— 252p® 2P multiplet. Overlaid are plots of fi,s{70}703" {70} where the optical depths are those
deduced from the observed branching ratios which are listed for the 3/2-1/2 in table 6.2. The factors
fios{70} are determined such that the observed and predicted fluxes for the 3/2-1/2 component
match exactly.

the disk despite the fact that the observed fluxes are significantly lower than those
in this region. Moreover, the inclusion of instrumentally scattered light is insufficient
to resolve this discrepancy. This signal, being true, again suggests the presence of
unresolved structures.

This body of evidence demonstrates that the discrepancy in fig. 6.7 is not due to
the spatial variation of the source function but is due to structure. It follows that
the neglect of the dependence of the source function on space is appropriate and the

line-of-sight averaged escape probability is effective.

6.7 Implications for transition region structure

It has been concluded that fi,s{7o} may be interpreted as a filling factor, which
represents the area of the slit occupied by emitting structures. Since it is independent
of optical depth, it may be written as f;,s. The deduced filling factors for the C 11
multiplets at 904 and 1036 A are shown in figs 6.11a and b respectively and those
of the C 111 multiplet at 1775 A are shown in fig. 6.12. In each case the factors are
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Figure 6.11: C u filling factors (f;,s) versus pointing position for lines of (a) the 904 A multiplet
and (b) the 1036 A multiplet. In (b) the filling factor values for the four highest pointing positions
set to the value at 970.9 arc sec since no optical depths were deduced for these points (see table 6.2).
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Figure 6.12: C 11 1775 A multiplet filling factors versus pointing position.

scaled to be unity at 946.462 arc sec. There is a general downward trend evident
in figs 6.11a and 6.12 indicating a decrease in occupation of the slit by emitting
structures with distance from disk centre. No such trend is evident in fig. 6.11b. In
each figure, however, strong variations are evident. This variability implies that the
absolute filling factors are unity at no more than one pointing position and are thus
unlikely be unity anywhere. This implies the presence of unresolved structures at
each pointing position — i.e. on the disk, at the limb and beyond.

Of course, the observed fluxes are summed over the slit which has a length of
~ 60 arc sec. Thus the filling factors here correspond to the presence of spicule-like
structures of diameter less than 60 arc sec. Such structures are evident in figs 2.8a
and b. If at each pointing position the pixels are sorted according to their brightness,
then the data may be split into regions associated with resolved structures and regions

that are visibly in between the observable structures.
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Figure 6.13: Observed fluxes of the C 111 252p 3P, — 2p 3P, line at 1175.711 A compared with
predicted values based on an exponential density model overlaid, for (a) regions associated with
observable structure and (b) regions not associated with observable structure.
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Figs 6.13a and b show observed and model fluxes of the C 111 252p 3P, — 2p? 3 P,
line at 1175.711 A for regions associated and not associated with observable struc-
ture. For regions associated with structure the stratified model clearly fails as before.
For the intra-structure regions, however, the stratified model is much more effective.
Figs 6.14a and b, on the other hand, show the same observed fluxes this time in
comparison with 7g®{7}. In both cases there is a significant deviation indicating

the presence of unresolved structures even in the intra-structure data.

6.8 Concluding remarks

In this chapter the C 11 and C 111 spectral data discussed in chapter 2 has been re-
assessed both from a modelling and diagnostic perspective. The stratified models
previously considered have been re-applied with an improved calculation of optical
depth and with line blending and instrumentally scattered light included. The resul-
tant fits to both observed fluxes and branching ratios are more effective at certain
positions and less effective at others as compared with those of chapter 2. Optical
depths at disk centre extracted from these models are comparable with those obtained
in chapter 2. The deduced density scale height for C 11 is also comparable with that
or chapter 2 but the C 111 value differs due to a poor fit to the branching ratios of
this ion in the vicinity of the limb.

The inclusion of scattered light improves the fit to the branching ratios at positions
above ~ 970 arc sec but fails to account for the observed fluxes at such heights. This
implies that the observed emission at such heights is not dominated by scattered light
which in turn suggests that the emitting structures are observationally unresolved.

Consideration of observed fluxes in comparison with 7,g® {7} confirms the con-
clusion that the discrepancy between model and observed fluxes is due to the presence
of unresolved emitting structures. This analysis serves also to validate the assumption
asserted in chapter 3 that the spatial variation of the source function due to the vari-
ation of (T, N,) is negligible in this context. This in turn confirms the effectiveness
of the line-of-sight averaged escape probability, g(i){ﬁ)}, in a moderate disk centre

optical depth regime.
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Figure 6.14: Observed fluxes of the C 111 252p 3P, — 2p 3P, line at 1175.711 A with 7,6 {7}
overlaid, for (a) regions associated with observable structure and (b) regions not associated with
observable structure.
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Scaled filling factors, which represent the portion of the slit occupied by emitting
structures have been deduced for the 904 A and 1036 A multiplets of C 11 and the
1175.711 A multiplet of C 111. These demonstrate the presence of unresolved emitting
structures at positions both on the disk and beyond the limb.

The spectral data has been split into regions visibly associated with and not
associated with spicule-like structures. For the intra-spicule data the stratified model
is effective in describing the observed C 111 252p 3P, — 2p® 3P, line (1175.711 A) fluxes.
This is not the case for the spicular data. For both datasets, however, filling factors
may be deduced indicating the presence of unresolved emitting structures within both

the intra-spicule and spicule regions.



Chapter 7
Thesis summary

This thesis addresses the problem of diagnosing and modelling optically thick struc-
tures in the lower solar atmosphere — i.e. the chromosphere and transition region.
Emission from such plasmas is described by the coupled, non-linear equations of ra-
diative transfer and statistical balance. The solution of these equations is complex
since it requires in principle complete knowledge of the dynamics and structure of
the plasma in question. Both of these are unknown in general and even if they were
known, the solution would be computationally complex. Methods that recognise both
the non-linearity and coupling of these equations exist (radiative transfer techniques)
but are restricted to particular source configurations that are generally very simple
such as 1-D or 2-D isobaric and/or isothermal slabs.

Presented and developed here are escape probability and absorption factor tech-
niques for solving the radiative transfer and statistical balance equations in a regime
within which they naturally linearise and decouple. These methods have the benefit
of being simple to use and are easily integrated within arbitrarily complex geometric
plasma models. Thus they are desirable for studying the solar chromosphere and TR
which are both highly structured.

Escape probability and absorption factor techniques were introduced in chapter 2
and were applied to spectral measurements of the east solar limb made by the SUMER
instrument on board the SOHO spacecraft. Using these techniques, optical depths of

spectral lines of C 11 and C 111 were extracted at the limb from observed branching
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ratios of lines arising from a common upper level. Escape probabilities were coupled
with some simple atmosphere models to predict the branching ratio variations from
which optical depths at disk centre were deduced. These optical depths allowed all
the lines of C 11 and C 111 to be classified according to the effects of opacity on
both emergent intensities (via g{7p}) and the excited state population structure (via
9{70/2}). Tt was found that certain lines were optically thin but had opacity modified
upper levels due to absorption in other lines.

A predicted limb brightening curve for the C 111 2s2p® Py — 2p?3 P, line at 1175.711 A
was calculated based on the most effective fit to the observed branching ratios. Un-
like the fits to the ratios, the fit to the fluxes, though effective on the disk and well
beyond the limb, was poor in the vicinity of the limb itself. This fact, coupled with
the inability of the line-of-sight escape probability to extract optical depths for the
C 11 1175.711 A line in this region, illustrate weaknesses in the escape probability
expressions and/or the stratified atmosphere models.

To resolve these discrepancies, and to investigate the applicability of the escape
probability approach in general, the assumptions underpinning these methods have

been addressed. The key areas studied relate to
1. the variation of the source function with respect to space and frequency
2. the effects of atmospheric structure
3. instrumental effects

In chapter 3 the spatial variation of the source function was considered. The source
function varies spatially for two reasons: firstly, due to the spatial variation of (7, N,)
which leads to a dependence of the population structure on position, and secondly
due to the influence of photo-absorption on the population structure. The first source
of variation, though significant, was initially neglected in order to focus on the ef-
fect of opacity on the source function variation. This may otherwise be described as
scattering into the line-of-sight. For a number of perpendicular optical depths, the
population structure was calculated throughout model emitting layers using a spa-

tially dependent absorption factor, A(7g, ). This calculation led to the identification
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of a disk centre optical depth regime within which the modification to the source
function due to opacity impinges negligibly on the validity of the line-of-sight aver-
aged escape probability. The maximum optical depth for which g{7y} is valid was
found to be ~ 10.

As part of this study, the quantity G (7o, z) = 1/2(g{75 } +3{75 }), was introduced.
It was found that the range of optical depths within which this quantity is valid is
smaller than that for g{7}. This is due to indirect effects which mostly influence lines
that share an upper level with lines that are more optically thick than themselves.
The maximum optical depth for which G(7,z) is effective is ~ 0.5. However, the
indirect effects are most significant at the layer edges and thus the optical depth
range for which g{7y/2} is greater (~ 1).

In chapter 4 the effects of line blending were considered. Line blending fits
naturally within the escape probability/absorption factor framework from an alge-
braic point of view. However, it introduces non-linearity into the g{7,/2} expression
through an explicit dependence on upper level population densities which are opac-
ity sensitive. Consequently g{7y/2} must be calculated iteratively when blending is
included. If it is calculated in this way then, as in the blended case, it is effective
for a range of optical depths although this range is restricted in comparison with the
unblended case. This restriction is dependent on the degree of blending. As before,
the spatially dependent equivalent, G(7o, x), fails at layer edge for lines that share an
upper level with a thicker line.

If g{7o/2} is not calculated iteratively its range of validity is severely reduced and
is most markedly in error for the most severely blended lines.

Again a disk centre optical depth regime was identified within which the line-of-
sight averaged escape probability, g {7} is valid. The upper optical depth limit was
found to be ~ 4.

Spectral line profiles were considered in a blended context and it was found that
opacity can lead to significant distortion of individual line profiles and can severely
alter the intensity envelope of multiplets affected by blending. Opacity can also lead
to perceived Doppler shifts in overlapped components.

In chapter 5 the effects of atmospheric structure and plasma flow were addressed.
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It was demonstrated that for a structured, dynamic, optically thick plasma, an ap-
propriate stratified, static model can be found from which an optical depth regime
may be identified within which g {7y} is valid in both the stratified, static and the
structured, dynamic cases. This follows since the presence of structure and flow serve
to minimise the effects of photo-absorption on the source function.

The spectral data discussed in chapter 2 was reconsidered from both a modelling
and diagnostic perspective in chapter 6. Revised models were constructed that include
correct treatment of line-of-sight optical depths, line blending and instrumentally
scattered light. The resultant fits to observed limb-brightening curves and branching
ratio variations were partially improved and partially worsened compared with the
fits achieved in chapter 2. It was concluded that the structural detail ignored in
the stratified models is critical for modelling effectively the emergent fluxes. It was
also concluded that at heights above ~ 970 arc sec, the signals are not dominated
by instrumentally scattered light as had been expected. Rather structural issues are
responsible for the failure of the models at and beyond the limb.

Observed fluxes were analysed in comparison with fi,,{70}3® {7} from which it
was discovered that the quantities f,s{70} show no dependence on optical depth.
This implies that the spatial variation of the source function due to the variation
of (T, N.) with position may be neglected in the moderate optical depth regime of
interest here, as asserted in chapter 3. It follows that g {7} is accurate for moderate
optical depths.

The fios{70} terms, which may be written simply as fi,s, are interpreted as filling
factors, representing the area of the slit occupied by emitting structures. The variabil-
ity of these factors for the two multiplets of C 11 and the multiplet of C 111 considered
in this work, indicates that at all pointing positions, both on disk and off-limb, there
exist emitting structures that are observationally unresolved. In an attempt to resolve
these structures, the data was separated based on the visual identification of spicu-
lar and intra-spicular regions. The stratified models were found to be much more
effective for the intra-spicular data than in both the spicular and combined cases.
However, filling factors were deduced from both sets of data suggesting the presence

of structures within both regions that have diameters less than ~ 1 arc sec
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The effectiveness of the line-of-sight escape probability demonstrated here illus-
trates its potential for use within structurally complex, dynamic plasma models.
Moreover, the applicability of g {7y}, and its independence of model structure make
it a powerful tool for diagnosing plasma parameters such as optical depth, and filling
factors of emitting structures. It is possible to extend such techniques to incorporate
bound-free absorption factors (Loch, 2001) and to consider the effects of opacity on
ionisation balance. This fact, coupled with the flexibility of escape probability and
absorption factor techniques from a structural perspective, suggest that these models
may be applied to the study of radiative power loss from complex plasma geometries.

The branching ratio analysis is effective for diagnosing optical depths and filling
factors providing the corresponding optical depths at disk centre are not too great.
The cut-off is ~ 794, = 10 for unblended lines. For blended lines this cut-off is
lower and is dependent on the degree of overlap. Currently no simple formula exists
to compute the cut-off for blended lines but further studies may reveal a simple
connection between it and the optical depth of the line in question, along with those
of the overlapped components and their overlap parameters ((uéi) - l/én)) /Av). Disk
centre optical depths may be obtained by direct measurement or by model based
extrapolation as demonstrated in chapters 2 and 6.

The filling factor diagnostic may be used in conjunction with a line-of-sight filling
factor analysis such as that of Mariska et al. (1978). Such methods compare electron
densities deduced from emission measure analyses which yield the line-of-sight inte-
grated electron density, and local density diagnostics using line ratios. Together the
two could be used to diagnose the 3-D structure of spicule-like features.

The escape probability methods presented in this work are not limited to use
with quiet sun observations at the limb but may be applied anywhere, both on disk
and off-limb and to features such as active regions and prominences. Furthermore,
there are not restricted to use with stratified static models but may be coupled with
complex geometric and dynamic plasma models to predict optically thick emission
for comparison with observation. Providing the optical depths are moderate, such
predictions represent realistic solutions to the radiative transfer and statistical balance

equations.
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Appendix A

The assumption of constant source
function: results for the

exponential density case

The absorption factor analysis described in sec. 3.4 applies to a stratified, plane par-
allel atmosphere and may be performed using any density distribution, N;(z). The
absorption factors shown in figs 3.5 and 3.6 and the corresponding density distri-
butions shown in figs 3.8 — 3.11 are shown here for an exponential density model
(model 3). The agreement between A(ry,z) and G(7y, x) is not greatest at layer centre
but in between layer centre and the point of peak emission. Thereafter, however, the
same conclusions follow as in chapter 3. The agreement between A(7y,x) and G(79, )
decreases toward the layer edges and with optical depth. The A(7y, x) versus z trends
deviate from those of G (79, x) most markedly for lines that share an upper level with a
line thicker than themselves. The density distributions do not display these indirect
effects and are modified in a similar manner to those in the constant density case
but with the point of most significant modification begin between layer centre and
the point of peak emission. The corresponding limb-brightening curves are shown in
figs 3.12b and 3.13b.
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Figure A.1: Absorption factors versus position for selected lines of C 11 corresponding to three
sets of optical depths. Absorption factors are calculated iteratively via eqs 3.15 and 2.8 in an
exponential density model. The solid lines are A(7g,z) and the dotted lines are G{7o,z}. These
plots are comparable with those in fig. 3.5
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Figure A.2: Absorption factors versus position for selected lines of C 11 as in fig A.1. These plots
are comparable with those in fig. 3.6.
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Figure A.3: Upper level population densities versus spatial position for selected levels of C 11
calculated in an exponential density model. The solid lines correspond to calculations based on
A(7g, x) for the same three sets of optical depths as in figs A.1 and A.2. The dotted lines represent the
G (70, ) based calculations. Values are not absolute but are scaled so that the maximum population
density value is unity. These plots are comparable with those in fig. 3.8
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Figure A.4: Upper level population densities versus spatial position for selected lines of C 11
calculated in an exponential density model. The solid and dotted lines are as in fig. A.3. Values are
not absolute but are scaled so that the maximum population density value is unity. These plots are
comparable with those in fig. 3.9
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Figure A.5: Upper level population densities versus spatial position for selected lines of C 11
calculated in an exponential density model as in figs A.3 and A.4 but just in the most optically thick
case. The solid and dotted lines are as in figs A.3 and A.4
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Figure A.6: Upper level population densities versus spatial position for selected lines of C 11
calculated in an exponential density model as in fig. A.5. These plots are comparable with those in
fig. 3.11



Appendix B

The effect of line blending: results

for the exponential density case

The absorption factors shown in figs 4.7 and 4.8 and the corresponding density dis-
tributions shown in figs 4.10 — 4.13 are shown here for an exponential density model
(model 3). The agreement between A® (1, x) and G®(7y, z) is not greatest at layer
centre but in between layer centre and the point of peak emission. Thereafter, how-
ever, the same conclusions follow as in chapter 4. The agreement between A® (7, )
and G (7, ) decreases toward the layer edges and with optical depth. There is
a downward shift in the A® (7, z) values with respect to the G® (7, z) ones in the
blended lines. This is due to the dependence of A® (7, z) on opacity sensitive upper
level population densities of overlapped components. This shift would be removed
if GO (7y,2) were calculated iteratively. The A (7, ) versus x trends deviate from
those of G(7y, x) most markedly for lines that share an upper level with a line thicker
than themselves. The density distributions do not display these indirect effects and
are modified in a similar manner to those in the constant density case but with the
point of most significant modification begin between layer centre and the point of
peak emission. The corresponding limb-brightening curves are shown in figs 4.14b
and 4.15b.
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Figure B.1: Absorption factors with blending included versus position for selected lines of C 11
corresponding to three sets of optical depths. Absorption factors are calculated iteratively via
eqs 4.18 and 2.8 in an exponential density model. The solid lines are A() (7, z) and the dotted lines
are G {1y, z}. These plots are comparable with those in fig. 4.7.
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Figure B.2: Absorption factors with blending included versus position for selected lines of C 11 as
in fig A.1. These plots are comparable with those in fig. 4.8.
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Figure B.3: Upper level population densities versus spatial position for selected lines of C 11 with
blending effects included, calculated in an exponential density model. The solid lines correspond to
calculations based on A)(7y, ) for the same three sets of optical depths as in figs B.1 and B.2. The
dotted lines represent the G(9(ry,z) based calculations. These plots are comparable with those in
fig. 4.10.
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Figure B.4: Upper level population densities versus spatial position for selected lines of C 11 with
blending effects included, calculated in an exponential density model. The solid and dotted lines are
as in fig. B.3. These plots are comparable with those in fig. 4.11.
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Figure B.5: Upper level population densities versus spatial position including blending effects, for
selected lines of C 11 as in figs B.3 and B.4 but just in the most optically thick case. The solid and
dotted lines are as in figs B.3 and B.4. Values are not absolute but are scaled so that the maximum
population density value is unity. These plots are comparable with those in fig. 4.12.
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Figure B.6: Upper level population densities versus spatial position including blending effects, for
selected lines of C 11 as in fig. B.5. Values are not absolute but are scaled so that the maximum
population density value is unity. These plots are comparable with those in fig. 4.13.



